%0 Journal Article %T Experimental Investigations on the Effects of Carbon and Nitrogen Sources on Concomitant Amylase and Polygalacturonase Production by Trichoderma viride BITRS-1001 in Submerged Fermentation %A Arotupin Daniel Juwon %A Ogunmolu Funso Emmanuel %J Biotechnology Research International %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/904763 %X The paper investigates the effects of different commercial carbon and nitrogen sources on the concomitant synthesis of amylase and polygalacturonase enzymes with the aim of optimizing them for maximal enzyme production. The microorganism used in this work was the fungus Trichoderma viride BITRS-1001, which had been previously identified as a highly active producer of amylase and polygalacturonase enzymes. The results showed that the different commercial carbon and nitrogen substrate significantly affected the concomitant syntheses of amylase and polygalacturonase in culture media supplemented with the different commercial carbon and nitrogen substrates. The result obtained suggested that for optimal and concomitant synthesis of the enzymes by Trichoderma viride BITRS-1001 in submerged fermentation, minimal medium supplemented with maltose and casein were the carbon and nitrogen substrates of choice. 1. Introduction Microbes are rich sources of enzymes [1]. In nature, they have been endowed with vast potentials to produce array of enzymes, which have been exploited commercially over the years. Traditionally, enzymes have been extracted from plants and animals. However, microbial enzymes have formed the basis of commercial enzyme production. In recent years, the potential of using microorganisms as biotechnological sources of industrially relevant enzymes has stimulated interest in the exploration of extracellular enzymatic activity in several microorganisms isolated from different environments owing to several reasons [2¨C7]. Amylase (EC 3.2.1.1) and polygalacturonase (EC 3.2.1.15) from microbial origin have high biotechnological interest such as in the processing of foods, manufacturing of detergents, textiles, pharmaceutical products, medical therapy, in molecular biology, and in many industrial processes as reviewed in [4, 6, 8¨C22]. While amylase has been reported to have approximately 25% of the enzyme market of industrial enzymes [17, 23, 24], microbial pectinases have been reported to account for 25% of the global food enzymes sales [4]. The synthesis of these enzymes by microorganisms has been reported to be highly influenced by factors such as carbon sources, temperature, pH, and operating parameter such as incubation time in submerged culture [25, 26]. Factors like carbon, nitrogen sources and their concentrations have always been of great interest to researchers in the industry for the low-cost media design. It is also known that 30¨C40% of the production cost of industrial enzymes is estimated to be the cost of growth medium. Therefore, it is of %U http://www.hindawi.com/journals/btri/2012/904763/