%0 Journal Article %T Physiochemical Characterization of Briquettes Made from Different Feedstocks %A C. Karunanithy %A Y. Wang %A K. Muthukumarappan %A S. Pugalendhi %J Biotechnology Research International %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/165202 %X Densification of biomass can address handling, transportation, and storage problems and also lend itself to an automated loading and unloading of transport vehicles and storage systems. The purpose of this study is to compare the physicochemical properties of briquettes made from different feedstocks. Feedstocks such as corn stover, switchgrass, prairie cord grass, sawdust, pigeon pea grass, and cotton stalk were densified using a briquetting system. Physical characterization includes particle size distribution, geometrical mean diameter (GMD), densities (bulk and true), porosity, and glass transition temperature. The compositional analysis of control and briquettes was also performed. Statistical analyses confirmed the existence of significant differences in these physical properties and chemical composition of control and briquettes. Correlation analysis confirms the contribution of lignin to bulk density and durability. Among the feedstocks tested, cotton stalk had the highest bulk density of 964£¿kg/m3 which is an elevenfold increase compared to control cotton stalk. Corn stover and pigeon pea grass had the highest (96.6%) and lowest (61%) durability. 1. Introduction In the last four decades, researchers have been focusing on alternate fuel resources to meet the ever-increasing energy demand and to avoid dependence on crude oil. Biomass appears to be an attractive feedstock because of its renewability, abundance, and positive environmental impacts resulting in no net release of carbon dioxide and very low sulfur content. Biomass is very difficult to handle, transport, store, and utilize in its original form due to factors that can include high moisture content, irregular shape and sizes, and low bulk density. Densification can produce densified products with uniform shape and sizes that can be more easily handled using existing handling and storage equipment and thereby reduce cost associated with transportation, handling, and storage. Tumuluru et al. [1] classified conventional biomass densification processes into baling, pelleting, extrusion, and briquetting, which are carried out using a bailer, pelletizer, screw press, piston press, or roller press. Baling, briquetting, and pelleting are the most common biomass densification methods; pelleting and briquetting are the most common densifications used for solid fuel applications. In general, biomass/feedstock is a cellular material of high porosity since cells interior consists mainly of large vacuole-filled air in dry conditions [2]. In general, natural binders such as lignin, protein, and starches %U http://www.hindawi.com/journals/btri/2012/165202/