%0 Journal Article %T HIV-1 Reverse Transcriptase Still Remains a New Drug Target: Structure, Function, Classical Inhibitors, and New Inhibitors with Innovative Mechanisms of Actions %A Francesca Esposito %A Angela Corona %A Enzo Tramontano %J Molecular Biology International %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/586401 %X During the retrotranscription process, characteristic of all retroviruses, the viral ssRNA genome is converted into integration-competent dsDNA. This process is accomplished by the virus-coded reverse transcriptase (RT) protein, which is a primary target in the current treatments for HIV-1 infection. In particular, in the approved therapeutic regimens two classes of drugs target RT, namely, nucleoside RT inhibitors (NRTIs) and nonnucleoside RT inhibitors (NNRTIs). Both classes inhibit the RT-associated polymerase activity: the NRTIs compete with the natural dNTP substrate and act as chain terminators, while the NNRTIs bind to an allosteric pocket and inhibit polymerization noncompetitively. In addition to these two classes, other RT inhibitors (RTIs) that target RT by distinct mechanisms have been identified and are currently under development. These include translocation-defective RTIs, delayed chain terminators RTIs, lethal mutagenesis RTIs, dinucleotide tetraphosphates, nucleotide-competing RTIs, pyrophosphate analogs, RT-associated RNase H function inhibitors, and dual activities inhibitors. This paper describes the HIV-1 RT function and molecular structure, illustrates the currently approved RTIs, and focuses on the mechanisms of action of the newer classes of RTIs. 1. Introduction Since the human immunodeficiency virus (HIV) has been established to be the etiological agent of the acquired immunodeficiency syndrome (AIDS) [1, 2], an originally unpredicted number of drugs have been approved for the treatment of the HIV-infected patients [3]. This success in effective drugs identification, certainly unique in the treatment of viral infections, together with the use of such armamentarium in different combination therapeutic regimens, has transformed a highly lethal syndrome into a chronic disease [4]. The management of this disease, however, is still complex and worrisome due to problems such as monitoring of therapy efficacy, chronic administration drug toxicity, poor tolerability, drug resistance development, or therapy adjustment after treatment failures [4]. For all these reasons, the search for new inhibitors, possibly acting with molecular mechanisms different from the ones of the already approved drugs or anyway showing different patterns of drug resistance and, possibly, with diverse drug-associated chronic toxicity, is still a worldwide health care issue. The success in HIV infection therapy is certainly related to the fact that the HIV life cycle has been intensely dissected; several of its steps have been validated as drug targets, and, %U http://www.hindawi.com/journals/mbi/2012/586401/