%0 Journal Article %T Effect of Narrowband Interference on Galileo E1 Signal Receiver Performance %A Jie Zhang %A Elena-Simona Lohan %J International Journal of Navigation and Observation %D 2011 %I Hindawi Publishing Corporation %R 10.1155/2011/959871 %X Satellite navigation technology is becoming essential for civil application. The high-accuracy navigation service is demanded. However, the satellite signal may be exposed to the signal from other systems, which are sharing the same frequency band. This is a potential threat for the performance of navigation devices. The aim of this paper is to present an interference impact assessment in the context of global navigation based on the new modulation Composite Binary Offset Carrier (CBOC) that will be used for Galileo E1 civil signal. The focus is on the analysis of the Galileo CBOC-modulated signal robustness against narrowband interference. 1. Introduction Satellite navigation is a process of providing autonomous global geospatial position with coverage all over the world. The navigation technology is essential for several civil applications, such as in the transportation field (e.g., road, rail, and aviation). Other applications, such as precision agriculture, wildlife behavior monitoring, surveying, and time-based applications are also based on the estimation of usersĄŻ Position, Velocity, and Time (PVT) [1]. These applications, especially the ones dealing with safety, require high accuracy of usersĄŻ PVT estimation. The Global Navigation Satellite Systems (GNSSs) signals are allocated to Radio Navigation Satellite Services (RNSSs) and Aeronautical Radio Navigation Services (ARNSs) on a worldwide coprimary basis. However, the Global Navigation Satellite Systems (GNSSs) signals may be exposed to potential interference from other services that are sharing the similar frequency band. They could likely represent potential threats for GNSS devices. The interference may degrade the GNSS receiversĄŻ performance and compromise the safety. Potential interferences are largely emanated from unintentional source or intentional jamming and spoofing of GNSS signal. Radio frequency interference (RFI) is one of the unintentional interference sources, whose frequency might be located in the satellite signal bands. RFI is normally classified as either wideband or narrowband, depending on whether its bandwidth is large or small relative to the bandwidth of the desired GNSS signal. Wideband interference can be a Gaussian waveform as in the case of Ultra-Wideband (UWB) systems or harmonic from television transmission overcoming the front-end filter of a GNSS receiver [2]. Narrowband interference could originate from Amplitude Modulation (AM) or Frequency Modulation (FM) station. The interference represents an impairing factor in GNSS application mainly due to the low power %U http://www.hindawi.com/journals/ijno/2011/959871/