%0 Journal Article %T Reduction of Collimator Correction Artefacts with Bayesian Reconstruction in Spect %A Tuija Kangasmaa %A Antti Sohlberg %A Jyrki T. Kuikka %J International Journal of Molecular Imaging %D 2011 %I Hindawi Publishing Corporation %R 10.1155/2011/630813 %X Poor resolution of single photon emission computed tomography (SPECT) has degraded its use in clinical practice. Collimator correction has been shown to improve the reconstructed resolution, but the correction can generate ringing artefacts, which lower image quality. This paper investigates whether Bayesian reconstruction methods could reduce these artefacts. We have applied and tested three Bayesian reconstruction methods: smoothing prior, median root prior, and anatomical prior. To demonstrate the efficacy of these methods, we compared their physical and visual performance both in phantom and patient studies. All the three Bayesian reconstruction methods reduced the collimator correction artefacts. Images reconstructed using the smoothing prior and the median root prior had slightly lower contrast than the standard reconstruction with collimator correction, whereas the anatomical prior produced images with good resolution and contrast. 1. Introduction Collimator response correction during iterative SPECT reconstruction has recently gained a lot of attention. The collimator response correction has been shown to simultaneously increase reconstructed resolution and lower image noise level [1]. This improvement in resolution-noise trade-off has further been shown to lead to better lesion detection performance [2, 3] and higher quantitative accuracy [4]. The improved resolution-noise trade-off has also given rise to the idea of half-time imaging; that is with the new correction methods it could be possible to acquire data with at least the currently accepted image quality, only at half the acquisition time [5, 6]. The advantages of the half-time imaging are remarkable: with the imaging time reduced to half, artefacts caused by patient movement are to decrease and the imaging would become more conceivable for patients that find it hard to stay still during long acquisitions. Decreased imaging time would also allow more patients to be imaged per day or the current imaging time could be kept the same but the injected activity would be reduced to half, which would reduce the radiation dose and the amount of the radiopharmaceutical used. Despite its many benefits, collimator response correction has its disadvantages. Iterative reconstruction with collimator correction complicates the reconstruction algorithm markedly and leads to longer reconstruction times. This, however, is not a major problem nowadays due to the increased computing power of modern computers. Collimator response correction has also been noticed to generate severe Gibbs-like ringing artefacts %U http://www.hindawi.com/journals/ijmi/2011/630813/