%0 Journal Article %T Ghosts of bump attractors in stochastic neural fields: Bottlenecks and extinction %A Zachary P. Kilpatrick %J Quantitative Biology %D 2015 %I arXiv %X We study the effects of additive noise on stationary bump solutions to spatially extended neural fields near a saddle-node bifurcation. The integral terms of these evolution equations have a weight kernel describing synaptic interactions between neurons at different locations of the network. Excited regions of the neural field correspond to parts of the domain whose fraction of active neurons exceeds a sharp threshold of a firing rate nonlinearity. For sufficiently low firing threshold, a stable bump coexists with an unstable bump and a homogeneous quiescent state. As the threshold is increased, the stable and unstable branch of bump solutions annihilate in a saddle node bifurcation. Near this criticality, we derive a quadratic amplitude equation that describes the slow evolution of the even mode (bump contractions) as it depends on the distance from the bifurcation. Beyond the bifurcation, bumps eventually become extinct, and the time it takes for this to occur increases for systems nearer the bifurcation. When noise is incorporated, a stochastic amplitude equation for the even mode can be derived, which can be analyzed to reveal bump extinction time both below and above the saddle-node. %U http://arxiv.org/abs/1505.06257v2