%0 Journal Article %T A two-patch prey-predator model with dispersal in predators driven by the strength of predation %A Yun Kang %A Sourav Kumar Sasmal %A Komi Messan %J Quantitative Biology %D 2015 %I arXiv %X Foraging movements of predator play an important role in population dynamics of prey-predator interactions, which have been considered as mechanisms that contribute to spatial self-organization of prey and predator. In nature, there are many examples of prey-predator interactions where prey is immobile while predator disperses between patches non-randomly through different factors such as stimuli following the encounter of a prey. In this work, we formulate a Rosenzweig-MacArthur prey-predator two patch model with mobility only in predator and the assumption that predators move towards patches with more concentrated prey-predator interactions. We provide completed local and global analysis of our model. Our analytical results combined with bifurcation diagrams suggest that: (1) dispersal may stabilize or destabilize the coupled system; (2) dispersal may generate multiple interior equilibria that lead to rich bistable dynamics or may destroy interior equilibria that lead to the extinction of predator in one patch or both patches; (3) Under certain conditions, the large dispersal can promote the permanence of the system. In addition, we compare the dynamics of our model to the classic two patch model to obtain a better understanding how different dispersal strategies may have different impacts on the dynamics and spatial patterns. %U http://arxiv.org/abs/1505.03820v1