%0 Journal Article %T Cytoplasmic flows as signatures for the mechanics of mitotic positioning %A Ehssan Nazockdast %A Abtin Rahimian %A Daniel Needleman %A Michael Shelley %J Quantitative Biology %D 2015 %I arXiv %X The proper positioning of the mitotic spindle is crucial for asymmetric cell division and generating cell diversity during development. Proper position in the single-cell embryo of Caenorhabditis elegans is achieved initially by the migration and rotation of the pronuclear complex (PNC) and its two associated centrosomal arrays of microtubules (MTs). We present here the first systematic theoretical study of how these $O(1000)$ centrosomal microtubules (MTs) interact through the immersing cytoplasm, the cell periphery and PNC, and with each other, to achieve proper position. This study is made possible through our development of a highly efficient and parallelized computational framework that accounts explicitly for long-ranged hydrodynamic interactions (HIs) between the MTs, while also capturing their flexibility, dynamic instability, and interactions with molecular motors and boundaries. First, we show through direct simulation that previous estimates of the PNC drag coefficient, based on either ignoring or partially including HIs, lead to misprediction of the active forces and time-scales of migration. We then directly study the dynamics of PNC migration under various force-transduction models, including the pushing or pulling of MTs at the cortex, and the pulling of MTs by cytoplasmically-bound force generators. While achieving proper position and orientation on physiologically reasonable time-scales does not uniquely choose a model, we find that each model produces a different signature in its induced cytoplasmic flow and MT conformations. We suggest then that cytoplasmic flows and MT conformations can be used to differentiate between mechanisms and to determine their contribution to the migration process. %U http://arxiv.org/abs/1511.02508v1