%0 Journal Article %T Perinatal Cerebellar Injury in Human and Animal Models %A Valerie Biran %A Catherine Verney %A Donna M. Ferriero %J Neurology Research International %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/858929 %X Cerebellar injury is increasingly recognized through advanced neonatal brain imaging as a complication of premature birth. Survivors of preterm birth demonstrate a constellation of long-term neurodevelopmental deficits, many of which are potentially referable to cerebellar injury, including impaired motor functions such as fine motor incoordination, impaired motor sequencing and also cognitive, behavioral dysfunction among older patients. This paper reviews the morphogenesis and histogenesis of the human and rodent developing cerebellum, and its more frequent injuries in preterm. Most cerebellar lesions are cerebellar hemorrhage and infarction usually leading to cerebellar abnormalities and/or atrophy, but the exact pathogenesis of lesions of the cerebellum is unknown. The different mechanisms involved have been investigated with animal models and are primarily hypoxia, ischemia, infection, and inflammation Exposure to drugs and undernutrition can also induce cerebellar abnormalities. Different models are detailed to analyze these various disturbances of cerebellar development around birth. 1. Introduction Premature birth is a significant risk factor for adverse motor, coordination, cognitive, and behavioral outcomes in survivors [1]. The prevailing brain pathology in very preterm infants is diffuse white matter injury in the cerebral hemispheres [2]. In addition, a consistent pattern of regionally specific long-term volume reduction and abnormalities in cortical and deep grey matter structures in ex-preterm infants is now recognized [3, 4]. Injury and impaired development of the cerebellum, involving both white matter and grey matter components as a complication of premature birth, are also becoming increasingly recognized with advanced neonatal brain imaging [5¨C11]. Survivors of preterm birth demonstrate a constellation of long-term neurodevelopmental deficits, many of which are potentially related to cerebellar injury, including impaired motor functions such as hypotonia, fine motor incoordination, ataxia, and impaired motor sequencing [12, 13]. Cerebellar injury has also been implicated in cognitive, social, and behavioral dysfunction among older patients [14, 15] and may contribute to the long-term cognitive, language, and behavioral dysfunction seen among 25% to 50% formerly preterm infants [16¨C19]. The cerebellum is considered particularly vulnerable in the newborn human because of its very rapid growth at that time, a period comparable in the developing animal. The concept of a particular vulnerability of the cerebellum during its phase of rapid %U http://www.hindawi.com/journals/nri/2012/858929/