%0 Journal Article %T Mutagenesis as a Tool in Plant Genetics, Functional Genomics, and Breeding %A Per Sikora %A Aakash Chawade %A Mikael Larsson %A Johanna Olsson %A Olof Olsson %J International Journal of Plant Genomics %D 2011 %I Hindawi Publishing Corporation %R 10.1155/2011/314829 %X Plant mutagenesis is rapidly coming of age in the aftermath of recent developments in high-resolution molecular and biochemical techniques. By combining the high variation of mutagenised populations with novel screening methods, traits that are almost impossible to identify by conventional breeding are now being developed and characterised at the molecular level. This paper provides a comprehensive overview of the various techniques and workflows available to researchers today in the field of molecular breeding, and how these tools complement the ones already used in traditional breeding. Both genetic (Targeting Induced Local Lesions in Genomes; TILLING) and phenotypic screens are evaluated. Finally, different ways of bridging the gap between genotype and phenotype are discussed. 1. Introduction Plant breeding began as early as 10,000 BC during the Neolithic revolution, when tribes of hunter-gatherers started their shift towards a sedentary and agrarian society [1]. Domestication of crop plants seems to have taken place simultaneously in several subtropical regions, across central Africa, western South America, southeast Asia, and the Mediterranean during this period [2]. It is still a subject of discussion whether early attempts at domestication were consciously guided or random, although cave paintings at the Lascaux cave in France and Altamira in Spain as well as in other places show that early man was conscious of the life cycle and nature around him. The first experiments with plant breeding were most likely limited to selecting the most viable specimens from each harvest for subsequent sowing [3], which nevertheless had a profound impact on crop yield. This selection also altered the plants in new ways, since human selection was in practise often opposite to natural selection [4]. It was realised early, that domesticated plants were not to be considered ˇ°naturalˇ± and Charles Darwin coined the term ˇ°artificial selectionˇ± in 1859 to emphasise the difference between selection in nature and man-made selection [5]. He then further elaborated on the subject in a separate book published in 1868 [6]. Systematic selection has, over the years, now changed the domesticated plants to the point where the wild relatives of crop plants often are classified in completely different taxa. The greater yields from the domesticated crops, allowed for an increased human population density, formation of communities, and work specialization in areas other than food production within those communities. The move from foraging to agriculture also brought many negative %U http://www.hindawi.com/journals/ijpg/2011/314829/