%0 Journal Article %T A Pair of Partially Overlapping Arabidopsis Genes with Antagonistic Circadian Expression %A Andrea Kunova %A Elena Zubko %A Peter Meyer %J International Journal of Plant Genomics %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/349527 %X A large number of plant genes are aligned with partially overlapping genes in antisense orientation. Transcription of both genes would therefore favour the formation of double-stranded RNA, providing a substrate for the RNAi machinery, and enhanced antisense transcription should therefore reduce sense transcript levels. We have identified a gene pair that resembles a model for antisense-based gene regulation as a T-DNA insertion into the antisense gene causes a reduction in antisense transcript levels and an increase in sense transcript levels. The same effect was, however, also observed when the two genes were inserted as transgenes into different chromosomal locations, independent of the sense and antisense gene being expressed individually or jointly. Our results therefore indicate that antagonistic changes in sense/antisense transcript levels do not necessarily reflect antisense-mediated regulation. More likely, the partial overlap of the two genes may have favoured the evolution of antagonistic expression patterns preventing RNAi effects. 1. Introduction The expression of genetic information involves a sequence of molecular processes, including transcript synthesis, processing, turnover, transport and translation. Eukaryotes have developed regulatory systems at each of these levels, which can all contribute to the expression efficiency and profile of a gene. Key components in this context are natural antisense transcripts (NATs), for which a regulatory role has been demonstrated at most levels [1]. Work on yeast and animals has identified model genes that illustrate the regulatory influence of antisense transcription on sense transcript synthesis, processing, or stability. This has led to the proposal that NATs have evolved to comprise a second tier of gene expression in eukaryotes [2]. Most of our current knowledge about the mechanistic aspects of antisense-mediated gene regulation derives from work in the fungal or animal field. In plant research, antisense-mediated gene regulation systems are poorly characterised, which is contrasted by an unexpectedly high number of NATs in plants [3¨C5]). Among 26,939 annotated Arabidopsis genes, 3,027 contain antisense transcripts that are jointly expressed with their sense transcript partner. For another 7,598 genes, sense and antisense transcripts are both detected in specific tissues [3]. The abundance of NATs very strongly suggests that they are part of regulatory systems. The few examples, for which natural plant antisense transcripts have been documented to modify sense transcripts, are based on RNA %U http://www.hindawi.com/journals/ijpg/2012/349527/