%0 Journal Article %T Outcome from Complicated versus Uncomplicated Mild Traumatic Brain Injury %A Grant L. Iverson %A Rael T. Lange %A Minna W£¿ljas %A Suvi Liimatainen %A Prasun Dastidar %A Kaisa M. Hartikainen %A Seppo Soimakallio %A Juha £¿hman %J Rehabilitation Research and Practice %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/415740 %X Objective. To compare acute outcome following complicated versus uncomplicated mild traumatic brain injury (MTBI) using neurocognitive and self-report measures. Method. Participants were 47 patients who presented to the emergency department of Tampere University Hospital, Finland. All completed MRI scanning, self-report measures, and neurocognitive testing at 3-4 weeks after injury. Participants were classified into the complicated MTBI or uncomplicated MTBI group based on the presence/absence of intracranial abnormality on day-of-injury CT scan or 3-4 week MRI scan. Results. There was a large statistically significant difference in time to return to work between groups. The patients with uncomplicated MTBIs had a median of 6.0 days (IQR = 0.75¨C14.75, range = 0¨C77) off work compared to a median of 36 days (IQR = 13.5¨C53, range = 3¨C315) for the complicated group. There were no significant differences between groups for any of the neurocognitive or self-report measures. There were no differences in the proportion of patients who (a) met criteria for ICD-10 postconcussional disorder or (b) had multiple low scores on the neurocognitive measures. Conclusion. Patients with complicated MTBIs took considerably longer to return to work. They did not perform more poorly on neurocognitive measures or report more symptoms, at 3-4 weeks after injury compared to patients with uncomplicated MTBIs. 1. Introduction Most mild traumatic brain injuries (MTBIs) are not associated with visible abnormalities on structural neuroimaging. A complicated MTBI, in the original definition [1], was differentiated from an uncomplicated mild TBI by the presence of (a) a depressed skull fracture and/or (b) a trauma-related intracranial abnormality (e.g., hemorrhage, contusion, or edema). Other researchers have dropped the depressed skull fracture from the criteria and simply retained the criterion for an intracranial abnormality. The rates of complicated MTBIs, based on cohorts of patients who underwent acute computed tomography following head trauma, are presented in Table 1. The rates of abnormalities vary considerably. In general, when examining details within these studies, patients with GCS scores of 13 or 14 are more likely to have an abnormality than patients with a GCS score of 15. Other possible reasons for differences in abnormality rates could relate to technology (e.g., older scanners versus newer scanners) and referral patterns for neuroimaging (i.e., more liberal versus more conservative use of imaging). Table 1: Rates of complicated mild TBI in adults. It is seems logical %U http://www.hindawi.com/journals/rerp/2012/415740/