%0 Journal Article %T Supersonic Flutter Utilization for Effective Energy-Harvesting Based on Piezoelectric Switching Control %A Kanjuro Makihara %A Shigeru Shimose %J Smart Materials Research %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/181645 %X The harvesting of electrical energy generated from the flutter phenomenon of a plate wing is studied using the quasi-steady aerodynamic theory and the finite element method. The example of supersonic flutter structure comes from sounding rockets¡¯ wings. Electrical energy is harvested from supersonic flutter by using piezoelectric patches and switching devices. In order to evaluate the harvesting performance, we simulate flutter dynamics of the plate wing to which piezoelectric patches are attached. We demonstrate that our harvesting system can generate much more electrical energy from wing flutter than conventional harvesting systems can. This flutter utilization changes our perception to a useful one in various fruitful applications from a destructive phenomenon. 1. Introduction Flutter is caused by the interaction between the structural motion of a wing and the aerodynamic load exerted on the wing. It is a typical self-excited aeroelastic phenomenon that occurs in wings, thin walls, and so on. Dowell [1] occurs most frequently within a high-speed, that is, transonic, supersonic, and hypersonic flow. Lottati [2] investigated the effects of structural and aerodynamic damping on the speed of flutter of a composite plate wing. Tang and Dowell [3] have analyzed the nonlinear behavior of a flexible rotor blade due to structural free-play and aerodynamic stall nonlinearities. The analytical results were compared with experimental observations. Various studies have been conducted on flutter dynamics, such as prediction of flutter and robust structural optimization of wings [4]. The use of sophisticated smart materials such as piezoelectric materials, shape memory alloys, and magnetostrictive materials in aerospace engineering can lead to the development of new design concepts. A new design concept is to alter structural dynamics by exertion of force or deformation. Moon and Hwang [5] used the linear quadratic regulator theory to suppress nonlinear panel flutter. Han et al. [6] designed a mu-synthesis controller to enhance flutter suppression performance despite parametric uncertainties. Raja et al. [7] used multilayer piezoelectric actuators and piezoelectric sensors for constructing a linear quadratic Gaussian controller to suppress the flutter of a composite plate. Agneni et al. [8] applied this passive method to flutter suppression and demonstrated satisfactory suppression performance. However, flutter suppression performance achieved by adopting this passive method is poorer when the electrical resonance frequency is slightly different from the frequency %U http://www.hindawi.com/journals/smr/2012/181645/