%0 Journal Article %T General-Purpose Genotype or How Epigenetics Extend the Flexibility of a Genotype %A Rachel Massicotte %A Bernard Angers %J Genetics Research International %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/317175 %X This project aims at investigating the link between individual epigenetic variability (not related to genetic variability) and the variation of natural environmental conditions. We studied DNA methylation polymorphisms of individuals belonging to a single genetic lineage of the clonal diploid fish Chrosomus eos-neogaeus sampled in seven geographically distant lakes. In spite of a low number of informative fragments obtained from an MSAP analysis, individuals of a given lake are epigenetically similar, and methylation profiles allow the clustering of individuals in two distinct groups of populations among lakes. More importantly, we observed a significant pH variation that is consistent with the two epigenetic groups. It thus seems that the genotype studied has the potential to respond differentially via epigenetic modifications under variable environmental conditions, making epigenetic processes a relevant molecular mechanism contributing to phenotypic plasticity over variable environments in accordance with the GPG model. 1. Introduction Over the years, the debate about the evolutionary advantage of sexual over asexual reproduction has focused in part on the higher adaptive potential of populations with standing genetic variation [1] (and references therein). Each generation, the reproduction of amphimictic organisms results in genetic mixing, thus creating a multitude of new genotypes (and potentially novel phenotypes) in natural populations. While in sexually reproducing organisms each individual possesses a different genotype, asexually reproducing individuals from the same clonal lineage are presumed to be genetically identical. On the other hand, asexuality has some advantages of its own; there is no need to produce males, and asexual populations can double their size each generation [2]. This twofold advantage of asexual reproduction is thought to be constrained by their limitation in colonizing new environments and/or when living in temporally unstable or heterogeneous environments. In such conditions, the survival, flexibility, and adaptive potential of asexual lineages are aspects that are not well understood. The general-purpose genotype (GPG) model [3] (Figure 1(a)) proposed that evolutionary success of asexual organisms could be possible via generalist lineages selected for their flexible phenotypes utilizing wide ecological niches. Such phenotypic flexibility enables a given genotype to be successful in many different and variable environments [4, 5]. Other models, such as the frozen niche variation (FNV) model [6], rely on the existence %U http://www.hindawi.com/journals/gri/2012/317175/