%0 Journal Article %T The Key Role of Epigenetics in the Persistence of Asexual Lineages %A Emilie Castonguay %A Bernard Angers %J Genetics Research International %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/534289 %X Asexual organisms, often perceived as evolutionary dead ends, can be long-lived and geographically widespread. We propose that epigenetic mechanisms could play a crucial role in the evolutionary persistence of these lineages. Genetically identical organisms could rely on phenotypic plasticity to face environmental variation. Epigenetic modifications could be the molecular mechanism enabling such phenotypic plasticity; they can be influenced by the environment and act at shorter timescales than mutation. Recent work on the asexual vertebrate Chrosomus eos-neogaeus (Pisces: Cyprinidae) provides broad insights into the contribution of epigenetics in genetically identical individuals. We discuss the extension of these results to other asexual organisms, in particular those resulting from interspecific hybridizations. We finally develop on the evolutionary relevance of epigenetic variation in the context of heritability. 1. Introduction Despite its increased cost relative to asexual reproduction, sexual reproduction is common in multicellular organisms, which can lead to the interpretation that there is an advantage to reproducing sexually. This topic has been the subject of much debate, and, in the last decades, several hypotheses have been proposed to explain why sexual reproduction is maintained in populations. These hypotheses generally can be divided into two classes: (i) sex creates the genetic diversity necessary to cope with environmental variation (Fisher-Muller accelerated evolution theory [1, 2]; Red Queen hypothesis [3]; Tangled bank hypothesis [4]) and (ii) sex allows purging of deleterious mutations [2, 5, 6]. These hypotheses are all based on the assumption that asexual lineages are evolutionary dead ends. Asexual reproduction is the primary form of reproduction in bacteria, archaea, and protists. It is also not uncommon in multicellular eukaryotes and is found in many phyla, particularly in plants, arthropods, nematodes, and rotifers [7]. In plants and animals, obligate asexuality is a derived character. It often results from the hybridization of two individuals from different sexual species [8¨C10], producing fertile hybrids no longer capable of reproducing sexually. Over half the taxa examined by Neiman et al. [10] were represented by asexual lineages estimated to be >500,000 years old. Notably, amongst the oldest asexual lineages are the bdelloid rotifers, reported to have evolved for tens of millions of years without sexual reproduction [11]. These examples constitute a serious challenge to the common view that asexuality increases %U http://www.hindawi.com/journals/gri/2012/534289/