%0 Journal Article %T Evaluation of Gallium Arsenide Thermal Expansion Coefficient by Extended X-Ray Absorption Fine Structure %A Gora Dieye %A Sameh I. Ahmed %A Abdou C. Wade %A Djibril Diop %J World Journal of Condensed Matter Physics %P 37-46 %@ 2160-6927 %D 2019 %I Scientific Research Publishing %R 10.4236/wjcmp.2019.92003 %X Negative thermal expansion of gallium arsenide has been investigated through temperature dependent Extended X-ray Absorption Fine Structure (EXAFS) measurements. The bond thermal expansion coefficient ¦Ábond has been evaluated and compared to negative expansion coefficient ¦Átens due to tension effects. The overall thermal expansion coefficient is the sum of ¦Ábond and ¦Átens. Below 60 K, ¦Átens is greater than ¦Ábond  yielding to a negative expansion in this temperature region. Tension effects are progressively overcome by the stretching effects in the region 60 - 300 K. The asymmetry of nearest neighbors distribution is not negligible since the gaussian approximation underestimates the bond expansion by about 0.00426 Å. This error decreases when the temperature is lowered. The accuracy in the thermal expansion evaluation and the connection between third cumulant and thermal expansion are discussed. %K Negative Thermal Expansion %K Tension Effects %K EXAFS %K Asymmetry %K Gallium Arsenide %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=91109