%0 Journal Article %T 基于暗通道先验和多方向加权TV的图像盲去模糊方法<br>Blind Image Deblurring Method Based on Dark Channel Prior and Multi-Direction Weighted TV %A 杨爱萍 %A 张越 %A 王金斌 %A 何宇清 %J 天津大学学报(自然科学与工程技术版) %D 2018 %R 10.11784/tdxbz201704069 %X 针对全变差(TV)正则化图像复原其细节恢复能力有限且对噪声敏感等问题, 本文利用多方向边缘检测, 对传统TV模型进行改进, 得到基于边缘检测的多方向加权TV模型; 为了使复原模型更具普适性且提高细节恢复能力, 本文将暗通道先验融入上述模型, 提出基于暗通道先验和多方向加权TV的图像盲去模糊方法.同时, 在模糊核估计过程中, 提出了基于自适应强边缘提取的模糊核估计方法, 可有效剔除伪边缘、噪声等不利信息, 使模糊核估计更具鲁棒性; 最后, 给出了模糊核估计和去模糊模型的最优化求解算法.实验结果表明, 本文方法可准确估计模糊核, 复原图像含有更丰富的边缘、纹理等细节特征.<br>In order to overcome the limitations of traditional TV regularization in image restoration with the deficient ability of detail recovery and sensitivity to the noise,a novel multi-direction weighted TV(MDWTV)model is proposed based on multi-direction edge detection. Moreover,combing with the dark channel prior and MDWTV this paper presents a blind image deblurring method with more capacity of detail recovery and more applicability in various scenarios. At the same time,a kernel estimation method is proposed based on adaptive strong edge extraction which can remove fake edges and noise as well as increase the robustness of kernel estimation. Then a modified alternating direction method(ADM)is proposed to solve the above model. Extensive experimental results show that our method can estimate the blur kernel more accurately,and the restored image contains more details such as edge and texture %K 盲图像去模糊 %K 暗通道先验 %K 多方向加权TV %K 边缘检测< %K br> %K blind image deblurring %K dark channel prior %K multi-direction weighted TV %K edge detection %U http://journals.tju.edu.cn/zrb/oa/darticle.aspx?type=view&id=201805008