%0 Journal Article %T Preparation and Characterization of Chitosan/Zinc Oxide Nanoparticles for Imparting Antimicrobial and UV Protection to Cotton Fabric %A M. M. AbdElhady %J International Journal of Carbohydrate Chemistry %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/840591 %X Synthesis of chitosan/ZnO nanoparticles was performed using different concentrations of ZnO at different temperatures. Nanoparticles of ZnO/chitosan were prepared in rod form with average length 60£¿nm and average width 5¨C15£¿nm. Thus, obtained nanoparticles of ZnO/chitosan were characterized using UV spectrophotometer, FTIR, TEM, X-ray, and SEM. Size and shape of chitosan/ZnO nanoparticles relied on conditions of their synthesis. Notably, chitosan/ZnO in rod form with average length of 60£¿nm and average width 5¨C15£¿nm could be achieved. Application of chitosan/ZnO nanoparticles to cotton fabric conferred on the latter antibacterial and UV protection properties. Cotton fabric was characterized using SEM, ultraviolet protection factor (UPF) rating, and antibacterial (gram-positive and gram-negative) characteristics. Finished cotton fabric exhibited good antibacterial properties against gram-positive and gram-negative bacteria. The UV testes indicated a significant improvement in UV protection of finished cotton fabric which is increasing by increasing the concentration of nanoparticles of ZnO/chitosan. 1. Introduction Chitin, the second most abundant biopolymer, widely distributes in nature as the principal component of exoskeletons of crustaceans and insects as well as of cell walls of some bacteria and fungi. It is a glucose-based unbranched polysaccharide. It differs from cellulose at the C-2 carbon where an acetamido residue locates instead of a hydroxyl group. Chitosan is a partially deacetylated polymer of acetyl glucosamine obtained through alkaline deacetylation of chitin. It is a compound polymer of glucosamine and N-acetyl glucosamine. The term chitosan refers to a group of polymers varying in molecular weight upward to several million Daltons [1]. The structure of chitosan is very similar to that of cellulose; it consists of ¦Â(1-4)-linked D-glucosamine residue with the 2-hydroxyl group being substituted by an amino or acetylated amino group. The primary amine groups endow chitosan with many special properties, making it applicable in many areas and readily available for chemical reactions, for example, salt formation with acids. Chitosan is positively charged, making it able to adhere to the negatively charged surface. Chitosan is soluble in diverse acids and able to interact with polyanions to form complexes and gels. It holds antibacterial and antifungal properties. It is safe and nontoxic [2, 3] With advent of nanotechnology, semiconductor nanoparticles have attracted much attention due to their novel optical, electrical, and mechanical %U http://www.hindawi.com/journals/ijcc/2012/840591/