%0 Journal Article %T Corrosion Inhibition of Carbon Steel in HCl Solution by Some Plant Extracts %A Ambrish Singh %A Eno E. Ebenso %A M. A. Quraishi %J International Journal of Corrosion %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/897430 %X The strict environmental legislations and increasing ecological awareness among scientists have led to the development of ¡°green¡± alternatives to mitigate corrosion. In the present work, literature on green corrosion inhibitors has been reviewed, and the salient features of our work on green corrosion inhibitors have been highlighted. Among the studied leaves, extract Andrographis paniculata showed better inhibition performance (98%) than the other leaves extract. Strychnos nuxvomica showed better inhibition (98%) than the other seed extracts. Moringa oleifera is reflected as a good corrosion inhibitor of mild steel in 1£¿M HCl with 98% inhibition efficiency among the studied fruits extract. Bacopa monnieri showed its maximum inhibition performance to be 95% at 600 ppm among the investigated stem extracts. All the reported plant extracts were found to inhibit the corrosion of mild steel in acid media. 1. Introduction Among the several methods of corrosion control and prevention, the use of corrosion inhibitors is very popular. Corrosion inhibitors are substances which when added in small concentrations to corrosive media decrease or prevent the reaction of the metal with the media. Inhibitors are added to many systems, namely, cooling systems, refinery units, chemicals, oil and gas production units, boiler, and so forth. Most of the effective inhibitors are used to contain heteroatom such as O, N, and S and multiple bonds in their molecules through which they are adsorbed on the metal surface. It has been observed that adsorption depends mainly on certain physicochemical properties of the inhibitor group, such as functional groups, electron density at the donor atom, ¦Đ-orbital character, and the electronic structure of the molecule. Though many synthetic compounds showed good anticorrosive activity, most of them are highly toxic to both human beings and environment. The use of chemical inhibitors has been limited because of the environmental threat, recently, due to environmental regulations. These inhibitors may cause reversible (temporary) or irreversible (permanent) damage to organ system, namely, kidneys or liver, or disturbing a biochemical process or disturbing an enzyme system at some site in the body. The toxicity may be manifest either during the synthesis of the compound or during its applications. These known hazardous effects of most synthetic corrosion inhibitors are the motivation for the use of some natural products as corrosion inhibitors. Plant extracts have become important because they are environmentally acceptable, inexpensive, %U http://www.hindawi.com/journals/ijc/2012/897430/