%0 Journal Article %T Utility-Based Joint Routing, Network Coding, and Power Control for Wireless Ad Hoc Networks %A Kaiqian Ou %A Yinlong Xu %A Xiumin Wang %A Wang Liu %J International Journal of Digital Multimedia Broadcasting %D 2011 %I Hindawi Publishing Corporation %R 10.1155/2011/786915 %X Energy saving and high delivery reliability are two essential metrics in wireless ad hoc networks. In this paper, we propose a joint power control and network coding (PCNC) scheme which regulates the transmission power to reduce the overall energy usage and uses network coding to improve reliability by reducing the number of packet retransmissions. To argue for PCNC scheme, we investigate both unicast and multicast routing scenarios. To evaluate routing optimality, we adopt expected utility as a metric, which integrates energy cost, reliability, and benefit value. Based on the expected utility, we explore the optimality in both unicast and multicast routing. For unicast routing, we propose an optimal algorithm. We show the NP-hardness of multicast routing problem, and also design a heuristic solution. Results from simulations demonstrate that PCNC improves the performance in terms of expected utility compared with existing techniques. 1. Introduction Wireless ad hoc networks drew lots of attention in recent years because of its potential applications in various areas. However, ad hoc networks suffer the energy shortage due to the limited power supply devices [1, 2] and unreliable communication caused by the unstable wireless medium [3, 4]. Therefore, saving energy and improving message delivery reliability are two important issues in the design of wireless ad hoc protocols. Wireless communications (e.g., sending a message) are usually the most energy-consuming events in wireless networks. Thus, one of the most straight approaches to reduce energy consumption is decreasing the transmission power at the senders. However, decreasing the transmission power will reduce the reliability of the link, which may incur packet loss during data propagation [5]. Packet loss leads to packet retransmissions, which consumes more energy. To balance energy cost and reliability, several approaches have been proposed, especially, transmission power control (TPC) and network coding (NC). TPC, which has been studied in [5, 6], focuses on adjusting transmission power level on each sender to reduce the energy consumption. In [5], TPC is applied to study the tradeoff between end-to-end reliability and energy consumption based on the probability link model. Different from [5], Li et al. [6] integrated TPC with retransmission to address the problem of energy-efficient reliable routing for wireless ad hoc networks. With TPC, the transmission power can be decreased at each node for the packet retransmissions. Their experimental results also demonstrate the benefits of adopting TPC %U http://www.hindawi.com/journals/ijdmb/2011/786915/