%0 Journal Article %T The double-stage delay-multiply-and-sum image reconstruction method improves imaging quality in a LED-based photoacoustic array scanner %A Ali Hariri %A Colman Moore %A Jesse V. Jokerst %A Moein Mozaffarzadeh %J Archive of "Photoacoustics". %D 2018 %R 10.1016/j.pacs.2018.09.001 %X Light-emitting diode-based photoacoustic imaging is more compact and affordable than laser-based systems, but it has low power and hence a high number of replicates. Here, we describe double-stage delay-multiply-and-sum (DS-DMAS) to improve image quality collected on a LED-based scanner. DS-DMAS was evaluated experimentally using point targets (in different laterals and depths) as well as a hair and a rabbit eye. This algorithm can compensate for the low SNR of LED-based systems and offer better lateral resolution of about 60%, 25%, higher contrast ratio of about 97%, 34%, and better full-width-half-maximum of about 60%, 25%, versus delay-and-sum) and delay-multiply-and-sum, respectively. More importantly, DS-DMAS offers this using a smaller number of frames (only 2% of all the frames). These results indicate that DS-DMAS might be a valuable tool in the translation of LED-based and other low power PAI systems %K Photoacoustic imaging %K Linear-array tomography %K LED-based systems %K Contrast improvement %K SNR enhancement %U https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171539/