%0 Journal Article %T Modelling of Reinforced Concrete Beam-column Joint for Cyclic Earthquake Loading %A Khalid Abdel Naser Abdel Rahim %J American Journal of Civil Engineering and Architecture %D 2019 %R 10.12691/ajcea-7-2-4 %X This paper presents a reinforced concrete beam-column joint model that was carried out for cyclic earthquake loading. The beam-column joint is the most important part of a building and modelling such an element and determining its structural behavior under the effect of seismic citations is essential to avoid losing lives and money. The non-linear analysis consisted of two types: (1) Non-linear static analysis that includes applying cyclic earthquake loading and (2) Non-linear dynamic analysis that involves applying three real historic earthquakes with different frequencies and magnitudes. The crack pattern analysis was established for non-linear static and non-linear dynamic to determine the worst-case scenario in terms of crack size. Another beneficial analysis was seismic analysis, which targeted the critical response time by which the maximum axial force, displacement and stress has occurred for applied real earthquakes. It was found that the structure sustained all the applied real earthquakes, however failure of the structure took place during the third cycle (50mm) of cyclic earthquake loading. After comparing the results with previous published work it was observed that the size of the reinforcement bars plays a major role in terms of load carrying capacity of the structure. It was observed that cracks occurred mostly under the earthquake due to the highest magnitude among other earthquakes. There was a variation in the location of cracks within the structure for each earthquake. Intermediate and major cracks occurred during the third cycle (50mm) of cyclic earthquake loading within the joint. The cracks were developed and increased as the cycle was increased leading to cracks across the joint after the forth and fifth cycles and failure of the structure. Although the critical response time for the earthquake was lower than the other earthquakes it was the most active and had a larger effect on the model. This is because the earthquake had the highest magnitude among applied earthquakes. The results obtained from the author¡¯s model were used to suggest some recommendations on Eurocode 8: Design of structures for earthquake resistance. General rules, seismic actions and rules for buildings (2004) BS EN 1998-1: 2004 to improve the performance of beam-column joints during earthquakes. The main reasons for beam-column joint failure are due to the transverse steel which crosses diagonal cracks and begins yielding, anchorage failure of reinforcement, loss in moment carrying capacity of columns near joints and the opening and closing of cracks due to %U http://www.sciepub.com/AJCEA/abstract/10407