%0 Journal Article %T Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation %A Mohammad Anwar Hossain %A Pukclai Piyatida %A Jaime A. Teixeira da Silva %A Masayuki Fujita %J Journal of Botany %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/872875 %X Heavy metal (HM) toxicity is one of the major abiotic stresses leading to hazardous effects in plants. A common consequence of HM toxicity is the excessive accumulation of reactive oxygen species (ROS) and methylglyoxal (MG), both of which can cause peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Higher plants have evolved a sophisticated antioxidant defense system and a glyoxalase system to scavenge ROS and MG. In addition, HMs that enter the cell may be sequestered by amino acids, organic acids, glutathione (GSH), or by specific metal-binding ligands. Being a central molecule of both the antioxidant defense system and the glyoxalase system, GSH is involved in both direct and indirect control of ROS and MG and their reaction products in plant cells, thus protecting the plant from HM-induced oxidative damage. Recent plant molecular studies have shown that GSH by itself and its metabolizing enzymes¡ªnotably glutathione S-transferase, glutathione peroxidase, dehydroascorbate reductase, glutathione reductase, glyoxalase I and glyoxalase II¡ªact additively and coordinately for efficient protection against ROS- and MG-induced damage in addition to detoxification, complexation, chelation and compartmentation of HMs. The aim of this review is to integrate a recent understanding of physiological and biochemical mechanisms of HM-induced plant stress response and tolerance based on the findings of current plant molecular biology research. 1. Introduction The molecular and physiological basis of crop plant interactions with the environment has attracted considerable interest in recent years. Being sessile organisms, plants are constantly exposed during their life cycle to adverse environmental conditions that negatively affect growth, development, or productivity. The presence of toxic compounds, such as heavy metals (HMs), is one important factor that can cause damage to plants by altering major plant physiological and metabolic processes [1¨C5]. In a strict sense, the term HM includes only elements with specific gravity above five but frequently biologists use this term for a vast range of metals and metalloids which are toxic to plants such as copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), nickel (Ni), cobalt (Co), cadmium (Cd), and arsenic (As) etc. Importantly, few HMs and transition metals such as sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), Fe, Cu, Zn, Co, or Ni are, at certain concentrations, essential micronutrients that are critically involved in %U http://www.hindawi.com/journals/jb/2012/872875/