%0 Journal Article %T Patterns of Cancer Genetic Testing: A Randomized Survey of Oregon Clinicians %A Summer L. Cox %A Amy I. Zlot %A Kerry Silvey %A Debi Elliott %A Tara Horn %A Amber Johnson %A Richard F. Leman %J Journal of Cancer Epidemiology %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/294730 %X Introduction. Appropriate use of genetic tests for population-based cancer screening, diagnosis of inherited cancers, and guidance of cancer treatment can improve health outcomes. We investigated cliniciansĄŻ use and knowledge of eight breast, ovarian, and colorectal cancer genetic tests. Methods. We conducted a randomized survey of 2,191 Oregon providers, asking about their experience with fecal DNA, OncoVue, BRCA, MMR, CYP2D6, tumor gene expression profiling, UGT1A1, and KRAS. Results. Clinicians reported low confidence in their knowledge of medical genetics; most confident were OB-GYNs and specialists. Clinicians were more likely to have ordered/recommended BRCA and MMR than the other tests, and OB-GYNs were twice as likely to have ordered/recommended BRCA testing than primary care providers. Less than 10% of providers ordered/recommended OncoVue, fecal DNA, CYP2D6, or UGT1A1; less than 30% ordered/recommended tumor gene expression profiles or KRAS. The most common reason for not ordering/recommending these tests was lack of familiarity. Conclusions. Use of appropriate, evidence-based testing can help reduce incidence and mortality of certain cancers, but these tests need to be better integrated into clinical practice. Continued evaluation of emerging technologies, dissemination of findings, and an increase in provider confidence and knowledge are necessary to achieve this end. 1. Introduction Genomic medicine has entered the clinical setting. Currently available genomic1 and genetic tests enable disease surveillance and individually tailored treatment, and many more such tests are on the horizon. Chronic diseases, including breast, ovarian, and colorectal cancer, have multifactorial etiologies, including genetic components. In 2010, breast and colorectal cancer were among the four most commonly diagnosed cancers and were the second and third most common causes of cancer death in both the USA and in Oregon [1]. An estimated 5%¨C10% of all breast and ovarian cancers are hereditary, meaning a single gene mutation contributed to development of the cancer. The majority of these inherited cancer cases are due to mutations in breast cancer susceptibility genes, which include BRCA1 and BRCA2 (BRCA) [2]. Women within the general population have a 12% lifetime risk of developing breast cancer and a 1% lifetime risk of developing ovarian cancer [3]. For women with BRCA mutations, however, the lifetime cancer risk is greater. It is estimated that 47%¨C66% of women with BRCA1 mutations will develop breast cancer by age 70, while 35%¨C46% of them will develop ovarian %U http://www.hindawi.com/journals/jce/2012/294730/