%0 Journal Article %T Metric-Based Cooperative Routing in Multihop Ad Hoc Networks %A Xin He %A Frank Y. Li %J Journal of Computer Networks and Communications %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/893867 %X Cooperative communication fully leverages the broadcast nature of wireless channels and exploits time/spatial diversity in a distributed manner, thereby achieving significant improvements in system capacity and transmission reliability. Cooperative diversity has been well studied from the physical layer perspective. Thereafter, cooperative MAC design has also drawn much attention recently. However, very little work has addressed cooperation at the routing layer. In this paper, we propose a simple yet efficient scheme for cooperative routing by using cooperative metrics including packet delivery ratio, throughput, and energy consumption efficiency. To make a routing decision based on our scheme, a node needs to first determine whether cooperation on each link is necessary or not, and if necessary, select the optimal cooperative scheme as well as the optimal relay. To do so, we calculate and compare cooperative routing metric values for each potential relay for each different cooperative MAC scheme (C-ARQ and CoopMAC in this study), and further choose the best value and compare it with the noncooperative link metric. Using the final optimal metric value instead of the traditional metric value at the routing layer, new optimal paths are set up in multihop ad hoc networks, by taking into account the cooperative benefits from the MAC layer. The network performance of the cooperative routing solution is demonstrated using a simple network topology. 1. Introduction Multihop wireless networks in forms of ad hoc networks, mesh networks and sensor networks have become active research topics in recent years in both academia and industry. Different types of nodes are deployed pervasively in various environments such as office buildings, wildlife reserves, battle fields, and metropolitan area networks. However, lots of challenging tasks still remain for building multihop ad hoc networks, despite significant progress achieved so far. Traditional techniques conceived for wired networking provide inefficient performance when applied in wireless ad hoc networks. Efforts are being made to improve the existing techniques and protocols with new features suitable for the wireless paradigms. For example, different from wired transmission, broadcast is an inherent feature in wireless communications, that is, information transmitted from a source node can be overheard by not only the destination node, but also neighboring nodes surrounding the source. In traditional wireless networks, signals received by the neighboring nodes are treated as interference and many techniques %U http://www.hindawi.com/journals/jcnc/2012/893867/