%0 Journal Article %T Fabrication and characterization of microwave cured high %A Gaurav Arora %A Himanshu Pathak %A Sunny Zafar %J Journal of Composite Materials %@ 1530-793X %D 2019 %R 10.1177/0021998318822705 %X Carbon nanotubes have been used as reinforcements in polymers due to their high elasticity, flexibility, and thermal conductivity. In this study, pellets of high-density polyethylene +20 wt% carbon nanotube and polypropylene +20 wt% carbon nanotube were cured using microwave energy. X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, uniaxial tensile test, and scanning electron microscopy was used to study morphology, thermal stability, and mechanical performance of the microwave-cured composites. X-ray diffraction analysis confirmed the bonding between the polymer and carbon nanotube as the peaks shifted and intensified. From the thermal study, it was observed that melting point of the composites is affected by microwave curing and the crystallinity of high-density polyethylene/carbon nanotube and polypropylene/carbon nanotube changed by 57.67% and 47.28%, respectively. Results of the uniaxial tensile test indicated that Young¡¯s modulus of microwave cured high-density polyethylene/carbon nanotube and polypropylene/carbon nanotube composites were improved by 295% and 787.8%, respectively. Scanning electron microscopic fractography shows the stretching of polymer over-lapped on carbon nanotubes in the direction of the applied load %K Microwave curing %K carbon nanotube %K polymer composites %K thermal analysis %K tensile strength %U https://journals.sagepub.com/doi/full/10.1177/0021998318822705