%0 Journal Article %T Existence and multiplicity results for Dirichlet boundary value problems involving the - Laplace operator %A Mostafa Allaoui %A Omar Darhouche %J - %D 2017 %R DOI Code: 10.1285/i15900932v37n1p69 %X This paper is concerned with the existence and multiplicity of solutions for the following Dirichlet boundary value problems involving the -Laplace operator of the form: \begin{equation*} \begin{gathered} -\operatorname{div}(|\nabla u|^{p_{1}(x)-2}\nabla u)- \operatorname{div}(|\nabla u|^{p_{2}(x)-2}\nabla u)= f(x,u) \quad\text{in } \Omega,\\ u=0 \quad \text{on } \partial\Omega. \end{gathered} \end{equation*} By means of critical point theorems with Cerami condition and the theory of the variable exponent Sobolev spaces, we establish the existence and multiplicity of solutions %K variational methods %K generalized Lebesgue-Sobolev spaces %U http://siba-ese.unisalento.it/index.php/notemat/article/view/18362