%0 Journal Article %T Multicomponent Ore Mineralization in Ultrabasites of the Ospa-Kitoy Massif of the East Sayan Ophiolite Belt: Formational Parageneses and Origin (Diamond, Nephrite, Noble Metals, Chromium, Nickel) %A Alexander Vasilyevich Tatarinov %A Lyubov Ilyinichna Yalovik %J Geomaterials %P 69-95 %@ 2161-7546 %D 2021 %I Scientific Research Publishing %R 10.4236/gm.2021.114005 %X It is shown that on a small (200 km2) massif area two extensive groups of metallic (Cr, Ni, Cu, Au, Ag, Pt, Pd, Ru, Os, Ir) and non-metallic (diamond, nephrite, jewelry and ornamental rodingites, chrysolite) types of minerals are spatially and genetically combined. They are grouped into 4 ore-forming types of polycomponent ores: diamond-gold-platinum-metal, chromium-nickel-platinum-metal, gold-platinum-metal and chrysolite-nephrite-rodingite. Ore-formational types form a minerogenic series¡ªthe product of a single ore-forming system. The paragenetic kinship between diamonds, chrysolite, nephrite, chromite and noble metals has been established. There are main genetic characteristics that ensure the formation uniqueness of the ore-forming system: 1) chariage-thrust control of ore mineralization and multilevel dynamometamorphic ore genesis with a mechanochemical mechanism of mineral formation. Ore-controlling thrusts are structures of shallow dipping that do not cover the entire lithosphere, but only a section of the earth¡¯s crust; 2) carbon fluid, mainly of carbonyl form, which has subjected all types of the ophiolite complex rocks of the Ospa-Kitoy node to intensive transformation, has a crustal mechanochemical, not mantle origin; 3) a strong paragenetic (¡°hybrid¡±) petrological-mineral-geochemical relation occurring between minerals groups of metallic and non-metallic types is a consequence of the participation in the ore genesis processes of a large variety in different material composition of rocks petrotypes, representing a section of the Earth¡¯s crust in the considered part of the East Sayan ophiolite belt. %K Ultrabasites %K Ophiolites %K Diamond %K Platinoids %K Nephrite %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=114971