%0 Journal Article %T 由修正引力公式导出的星系旋转速度与暗物质无关
The Rotation Speed of Galaxies Derived from the Modified Gravity Formula Is Independent of Dark Matter %A 陈军利 %J Astronomy and Astrophysics %P 41-55 %@ 2329-1265 %D 2023 %I Hans Publishing %R 10.12677/AAS.2023.114004 %X 物质由核子(质子和中子的统称)构成,每个核子都发出大量的引力子,星球内部核子发出的引力子被星球内部其他核子吸收,形成星球内部的凝聚力,星球壳层的核子发出的引力子有一部分发射到球外,以引力能量波的形式传播形成引力场,当引力能量波遇到引力场中其他星球的核子时,与其发生共振形成能量转移,此时引力子被其遇到的核子吸收形成引力。引力由星球壳层核子发射到球外的引力子多少决定,而引力子多少与星球表面积成正比,因此星球的引力与星球的表面积成正比,万有引力公式中引力与星球质量成正比,在星球和星系中只是一种近似。一般的星系都是盘状结构,在星系旋转速度模拟中,星系中的星球受到的引力与盘状结构的侧面积相关,本文在此分析的基础上,推导和计算了星系的旋转速度V = (0.5GDH)0.5,说明星系的旋转速度与星系中星球距离星系中心的距离无关,与星系盘的厚度相关,对于特定的星系,星系旋转速度是基本恒定的,同时也说明了在星系旋转速度中不需要暗物质的参与。对于存在旋臂的螺旋星系和棒旋星系,星系的旋转速度会随旋臂出现上下波动;对于像太阳系这样的少星星系,本文结论不适用。对于不同星系的旋转速度,除与星系盘的厚度有关外,应该还与星系物质密度有关。
Matter is composed of nucleons (the collective name for protons and neutrons). Each nucleon emits a large number of gravitons. The gravitons emitted by the nucleons inside the planet are absorbed by other nucleons inside the planet, forming cohesion within the planet. The nucleons emitted by the planet’s shell. Some of the gravitons are emitted outside the ball and propagate in the form of gravitational energy waves to form a gravitational field. When the gravitational energy waves en-counter the nuclei of other planets in the gravitational field, they resonate with them to form energy transfer. At this time, the gravitons are encountered by them. The nucleon absorption forms the gravitational force. Gravity is determined by the number of gravitons emitted from the core of the planet’s shell to the outside of the ball, and the number of gravitons is proportional to the surface area of the planet. Therefore, the gravity of the planet is proportional to the surface area of the planet. In the formula of universal gravitation, gravity is proportional to the mass of the planet. In the planet and Galaxy is only an approximation. Generally, galaxies have a disk-shaped structure. In the simulation of the rotation speed of the galaxy, the gravitational force exerted by the planets in the galaxy is related to the side area of the disk-shaped structure. Based on this analysis, this article deduces and calculates the rotation speed of the galaxy V = (0.5GDH)0.5, indicating that the rotation speed of a galaxy has nothing to do with the distance between the planets in the galaxy and the center of the galaxy, but is related to the thickness of the galaxy disk. For a specific galaxy, the rota-tion speed of the galaxy is basically constant. It also shows that dark matter does not need to be in-volved in the rotation speed of the galaxy. For spiral galaxies and barred spiral galaxies with spiral arms, the rotation speed of the galaxy will fluctuate up and down with the spiral arms; for galaxies with few stars like the solar system, the conclusion of this article %K 引力子,暗物质,星系旋转速度,引力公式
Graviton %K Darkmatter %K Galaxyrotation Speed %K Gravitational Formula %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=79503