%0 Journal Article
%T 一类集合的 3 因子个数研究
3-Factor Number Study of aClass of Sets
%A 庄婷婷
%J Pure Mathematics
%P 168-175
%@ 2160-7605
%D 2024
%I Hans Publishing
%R 10.12677/PM.2024.141018
%X 本论文研究由任意非 3 因子元素组成的集合 其中D是一无穷整数子集,我们证明了对任意的k≥1,存在无穷多个??1,??2∈A,它们的差??1???2至少有k个 3 因子。 分别讨论了集合A是整数集或有理数集下,利用数学归纳法以及集合之间的包含关系证得了上述结论是成立的。
In this thesis, we study the set consisting of any non-3-factor element where D is an infinite subset of integers.We show that there are infinitely many ??1,??2∈A, and their difference ??1???2 has at least ?? factors of 3 for any k≥1. If A is set of integers or set of rational numbers, the above conclusion is proved by mathematical induction
and the induction relation between sets.
%K 3 因子,非 3 因子,因子个数
Factor 3
%K Non-3-Factor
%K Number of Factors
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=79832