%0 Journal Article
%T 一些图的弱外部平衡划分
Weak External Bisection of Some Graphs
%A 刘玉敏
%J Pure Mathematics
%P 520-526
%@ 2160-7605
%D 2024
%I Hans Publishing
%R 10.12677/PM.2024.142050
%X 设G是一个图。G的一个2-划分是V(G)的一个2-划分,即V(G)=V1∪V2且V1∩V2= ?。如果一个2-划分满足||V1|-|V2||≤1,我们就称其为平衡划分。本文的研究主要基于Bollobás和Scott提出的一个猜想:每个图G都有一个平衡划分(V1,V2),对于V1中的每一个顶点v,v的邻点中至少有一半减去一个在V2中;对于V2中的每一个顶点v,v的邻点中至少有一半减去一个在V1中。在本文中,将对二部图、皇冠图以及风车图证实这一猜想。
Let G be a graph. A bipartition of G is a bipartition of V(G) with V(G)=V1∪V2 and V1∩V2= ?. If a bipartition satisfies ||V1|-|V2||≤1, we call it a bisection. The research in this paper is mainly based on a conjecture proposed by Bollobás and Scott: every graph G has a bisection (V1,V2) such that ?v∈V1, at least half minus one of the neighbors of v are in the V2;?v∈V2, at least half minus one of the neighbors of v are in the V1. In this paper, we confirm this conjecture for some bipartite graphs, crown graphs and windmill graphs.
%K 弱外部平衡划分,二部图,皇冠图,风车图
Weak External Bisection
%K Bipartite Graph
%K Crown Graph
%K Windmill Graph
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=81412