%0 Journal Article %T Physical Space Was Not Expanding %A Youqi Wang %J Journal of Modern Physics %P 634-673 %@ 2153-120X %D 2024 %I Scientific Research Publishing %R 10.4236/jmp.2024.155030 %X Plurality of characteristic peaks observed in number density distribution of galaxy redshift reveals that extent of physical space has been finite. Significant portion of observed celestial objects is found pair-wise associated, i.e., the observed lights were emitted from one and same luminescent source but seen at different sky directions of observer, which is a unique phenomenon that can occur but only in finite space. Cosmic microwave radiation has always been interpreted as afterglow of Big Bang event. However, such radiation is shown unobservable to current observer if Hubble-Lemaître Correlation is interpreted as caused by receding motion of celestial objects. On the other hand, cosmic radiation can be understood as a common and ordinary phenomenon due to space lens, a unique property only of finite space. From Sloan Digital Sky Survey data, internal diameter of physical space is measured as 2.0 billion light years. If celestial objects were receding, hence physical space was expanding, then characteristic peaks of finite physical space should not appear evenly in number density distribution of redshift of the objects but more sparsely with respect to redshift increase. However, as revealed by the data, locations of the characteristic peaks in the distributions are rather even that do not match the locations as required by receding motion of object. Therefore, as evidenced by the data, physical space was not expanding, at least during the recent 18 billion years. In addition, considerable portion of observed quasars is found sharing a common factor of ~1/2 for their respective gravitation redshifts. %K Geometry of Physical Space %K Big Bang Model %K Astrophysics %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=132636