%0 Journal Article %T Subplanes of <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mi>P</mi><mi>G</mi><mrow><mo>(</mo> <mrow> <mn>2,</mn><msup> <mi>q</mi> <mn>3</mn> </msup> </mrow> <mo>)</mo></mrow></mrow></math> and the Ruled Varieties <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msubsup> <mi>V</mi> <mn>2</mn> <mn>5</mn> </msubsup> </mrow></math> of <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mi>P</mi><mi>G</mi><mrow><mo>(</mo> <mrow> <mn>6,</mn><mi>q</mi></mrow> <mo>)</mo></mrow></mrow></math> %A Rita Vincenti %J Open Journal of Discrete Mathematics %P 16-27 %@ 2161-7643 %D 2024 %I Scientific Research Publishing %R 10.4236/ojdm.2024.142003 %X In this note we study subplanes of order <i>q</i> of the projective plane <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mi>&#x03A0;</mi><mo>=</mo><mi>P</mi><mi>G</mi><mrow><mo>(</mo> <mrow> <mn>2,</mn><msup> <mi>q</mi> <mn>3</mn> </msup> </mrow> <mo>)</mo></mrow></mrow> </math> and the ruled varieties <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msubsup> <mi>V</mi> <mn>2</mn> <mn>5</mn> </msubsup> </mrow> </math> of <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mi>&#x03A3;</mi><mo>=</mo><mi>P</mi><mi>G</mi><mrow><mo>(</mo> <mrow> <mn>6,</mn><mi>q</mi></mrow> <mo>)</mo></mrow></mrow> </math> using the spatial representation of &#928; in &#931;, by fixing a hyperplane <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <msup> <mi>&#x03A3;</mi> <mo>&#x2032;</mo> </msup> </math> with a regular spread of planes. First are shown some configurations of the affine <i>q</i>-subplanes. Then to prove that a variety <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msubsup> <mi>V</mi> <mn>2</mn> <mn>5</mn> </msubsup> </mrow> </math> of &#931; represents a non-affine subplane of order <i>q</i> of &#928;, after having shown basic incidence properties of it, such a variety <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msubsup> <mi>V</mi> <mn>2</mn> <mn>5</mn> </msubsup> </mrow> </math> is constructed by choosing appropriately the two directrix curves in two complementary subspaces of &#931;. The result can be translated into further incidence properties of the affine points of <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msubsup> <mi>V</mi> <mn>2</mn> <mn>5</mn> </msubsup> %K Finite Geometry %K Translation Planes %K Spreads %K Varieties %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=132725