%0 Journal Article
%T Fermat and Pythagoras Divisors for a New Explicit Proof of Fermat’s Theorem:a4 + b4 = c4. Part I
%A Prosper Kouadio Kimou
%A Franç
%A ois Emmanuel Tanoé
%A Kouassi Vincent Kouakou
%J Advances in Pure Mathematics
%P 303-319
%@ 2160-0384
%D 2024
%I Scientific Research Publishing
%R 10.4236/apm.2024.144017
%X In this paper we prove in a new way, the well known result, that Fermat’s equation<i> </i><i>a</i><sup>4</sup> + <i>b</i><sup>4</sup> = <i>c</i><sup>4</sup>, is not solvable in <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mi>ℕ</mi> </math> , when <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mi>a</mi><mi>b</mi><mi>c</mi><mo>≠</mo><mn>0</mn></mrow> </math> . To show this result, it suffices to prove that: <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mrow><mo>(</mo> <mrow> <msub> <mi>F</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo></mrow><mo>:</mo><msubsup> <mi>a</mi> <mn>1</mn> <mn>4</mn> </msubsup> <mo>+</mo><msup> <mrow> <mrow><mo>(</mo> <mrow> <msup> <mn>2</mn> <mi>s</mi> </msup> <msub> <mi>b</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo></mrow></mrow> <mn>4</mn> </msup> <mo>=</mo><msubsup> <mi>c</mi> <mn>1</mn> <mn>4</mn> </msubsup> </mrow> </math> , is not solvable in <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mi>ℕ</mi> </math> , (where <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mn>,</mn><msub> <mi>b</mi> <mn>1</mn> </msub> <mn>,</mn><msub> <mi>c</mi> <mn>1</mn> </msub> <mo>∈</mo><mn>2</mn><mi>ℕ</mi><mo>+</mo><mn>1</mn></mrow> </math> , pairwise primes, with necessarly <math display='inline'
%K Factorisation in ℤ
%K Greatest Common Divisor
%K Pythagoras Equation
%K Pythagorician Triplets
%K Fermat's Equations
%K Pythagorician Divisors
%K Fermat's Divisors
%K Diophantine Equations of Degree 2
%K 4-Integral Closure of ℤ
%K in ℚ
%U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=132813