%0 Journal Article %T 基于非局域超导量子谐振器的贝尔态制备
Bell State Generation Based on Non-Local Superconducting Quantum Resonators %A 黎杰 %J Modern Physics %P 110-117 %@ 2161-0924 %D 2024 %I Hans Publishing %R 10.12677/mp.2024.143013 %X 量子信息是量子物理和信息科学相结合的新型交叉学科,超导量子谐振器因其可被灵活设计、存储和引导微波光子以及拥有高品质因子等特点成为一个很好的量子信息处理平台。本文研究了基于非局域超导谐振器的全共振贝尔纠缠态的产生过程。使用的系统由一个长超导传输线所连接的两个非局域一维超导谐振器组成,这两个非局域谐振器又分别与两个承载信息的超导谐振器耦合。在本方案中,传输线不会被布局微波光子,从而可以抵抗长传输线的光子损失带来的影响。这也使得长传输线可以被设计的更为复杂以连接更多的非局域超导谐振器达成基于超导谐振器的大规模分布式量子计算。
Quantum information is a new interdisciplinary field that combines quantum physics and information science. Superconducting quantum resonators have become a good platform for quantum information processing due to their flexible design, storage, and guidance of microwave photons, as well as their high quality factors. This article investigates the generation process of fully resonant Bell entangled states based on non-local superconducting resonators. The system used consists of two non-local one-dimensional superconducting resonators connected by a long superconducting transmission line, which are coupled to two superconducting resonators carrying information, respectively. In this scheme, the transmission line will not be laid out with microwave photons, so it can resist the impact of photon loss caused by long transmission lines. This also makes long transmission lines more complex to connect more non local superconducting resonators for large-scale distributed quantum computing based on superconducting resonators. %K 腔量子电动力学,量子纠缠,量子计算
Cavity Quantum Electrodynamics %K Quantum Entanglement %K Quantum Computation %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=87600