%0 Journal Article %T 复合硫基质自养反应器处理实际二级出水的实验研究
Study on Treatment of Actual Secondary Effluent with Composite Sulfur-Based Autotrophic Reactor %A 朱治名 %A 乔妍 %A 赵琳 %A 朱智平 %A 张传义 %J International Journal of Ecology %P 282-289 %@ 2324-7975 %D 2024 %I Hans Publishing %R 10.12677/ije.2024.132037 %X 为解决硫自养脱氮系统(SAD)的除磷效率低及硫酸盐过高的问题,本文构建天然铁硫矿石(FeS、Fe1xS、FeS2)与硫磺(S0)复合硫基质反应器,考察其处理实际二级出水的运行效果。结果表明,在较低NO3?-N (16.58 ± 1.13)条件下,三个反应器的NO3?-N去除率分别达到99%~61.44%、78.09%~93.99%和98.40%~73.62%,对于较高NO3?-N (42.39 ± 2.19)时,而NO3?-N去除效果显著降低,分别为26.59%、38.08%、47.23%左右。B2反应器除磷效果较好,复合基质体系反应中释放的Fe2 不仅与OH和PO43?结合形成沉淀,且在微生物作用下被氧化为Fe3 ,Fe3 也可与OH和PO43?结合形成沉淀,从而提高了系统的除磷效果。B1和B2复合系统的硫酸盐低于SAD体系,表明硫磺/硫铁矿复合系统可降低硫酸盐含量。
In order to solve the problems of low phosphorus removal efficiency and high sulfate in sulfur autotrophic nitrogen removal system (SAD), a composite sulfur-based reactor with natural iron-sulfur ores (FeS, FeS1?x, FeS2) and sulfur (S0) was constructed, the operation effect of treating actual secondary effluent was investigated. The results showed that theNO3?-N removal efficiencies of the three reactors were 99%~61.44%, 78.09%~93.99% and 98.40%~73.62%, respectively, at lowNO3?-N (16.58 ± 1.13), the removal rate ofNO3?-N was 26.59%, 38.08% and 47.23% respectively. However, whenNO3?-N was (42.39 ± 2.19), the removal efficiency ofNO3?-N was significantly decreased (26.59%, 38.08%, 47.23% respectively). The phosphorus removal efficiency of B2 reactor is best. The Fe2 released from the composite matrix system not only combines with OH andPO43?to form precipitation, but also oxidizes to Fe3 under the action of microorganism, and Fe3 can also combine with OH andPO43?to form precipitation, therefore, the phosphorus removal effect of the system is improved. The sulfate content of B1 and B2 composite system is lower than that of SAD system, which indicates that the sulfur/pyrite composite system can reduce the sulfate content. %K 复合硫基质反应器,脱氮除磷,硫酸盐,二级出水
Composite Sulfur-Based Autotrophic Reactor %K Nitrogen and Phosphorus Removal %K Sulfate %K Secondary Effluent %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=88229