%0 Journal Article %T The Application of Analytical Techniques to Alpha-Synuclein in Parkinson’s Disease %A Olatayo Adedayo Olahanmi %J American Journal of Analytical Chemistry %P 269-285 %@ 2156-8278 %D 2024 %I Scientific Research Publishing %R 10.4236/ajac.2024.159018 %X Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor symptoms such as tremors, rigidity, and bradykinesia, as well as non-motor symptoms including cognitive impairment and mood disorders. A hallmark of PD is the accumulation of alpha-synuclein, a presynaptic neuronal protein that aggregates to form Lewy bodies, leading to neuronal dysfunction and cell death. The study of alpha-synuclein and its pathological forms is crucial for understanding the etiology of PD and developing effective diagnostic and therapeutic strategies. Analytical techniques play a pivotal role in elucidating the structure, function, and aggregation mechanisms of alpha-synuclein. Biochemical methods such as Western blotting and enzyme-linked immunosorbent assay (ELISA) are employed to detect and quantify alpha-synuclein in biological samples, offering insights into its expression levels and post-translational modifications. Imaging techniques like immunohistochemistry and positron emission tomography (PET) allow for the visualization of alpha-synuclein aggregates in tissue samples and in vivo, respectively, facilitating the study of its spatial distribution and progression in PD Spectroscopic methods, including nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, provide detailed structural information on alpha-synuclein and its isoforms, aiding in the identification of conformational changes associated with aggregation. Emerging techniques such as cryo-electron microscopy (Cryo-EM) and single-molecule fluorescence enable high-resolution structural analysis and real-time monitoring of alpha-synuclein aggregation dynamics, respectively. The application of these analytical techniques has significantly advanced our understanding of the pathophysiological role of alpha-synuclein in PD. They have contributed to the identification of potential biomarkers for early diagnosis and the evaluation of therapeutic interventions targeting alpha-synuclein aggregation. Despite technical limitations and challenges in clinical translation, ongoing advancements in analytical methodologies hold promise for improving the diagnosis, monitoring, and treatment of Parkinson’s disease through a deeper understanding of alpha-synuclein pathology. %K Parkinson’ %K s Disease %K Alpha-Synuclein %K Techniques %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=135876