全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Passivation mechanism of thermal atomic layer-deposited Al2O3 films on silicon at different annealing temperatures

DOI: 10.1186/1556-276X-8-114

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300[degree sign]C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600[degree sign]C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300[degree sign]C, 500[degree sign]C, and 750[degree sign]C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750[degree sign]C.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133