全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Three Dimensional Microscopic Flow Simulation Across the Interface of a Porous Wall and Clear Fluid by the Lattice Boltzmann Method

DOI: 10.2174/1877729500901010035]

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effects of the porous medium on the flow in the interface region between a highly porous wall and clear fluid are discussed. Three dimensional laminar flows in the interface regions of foamed porous walls are microscopically simulated by the lattice Boltzmann method. The chosen porous structure is the body-centered-cubic or the unit cube structure whose porosity ranges 0.82-0.98. The velocity distribution in the interface regions show that the flow penetration into porous layer is very little and it decays until one pore-diameter depth from the interface. To describe the slip velocity distribution independently of the porous structure, the permeability Reynolds number and the friction velocity are confirmed to be representative scale parameters. The stress jump conditions across the interface are also examined with the simulation results. Although the obtained averaged wall friction of the porous interface is slightly lower than that of the solid smooth impermeable surface, the reduction is not significant due to the Reynolds stress arisen from the statistical averaging of the interfacial flow motions.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133