全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of a Heavy-Metal-Polluted Environment on Viola tricolor Genome Size and Chromosome Number

DOI: 10.2478/v10182-011-0001-8

Keywords: Viola tricolor, pseudometallophyte, C-DNA value, chromosome number, aneuploidy, polyploidy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intraspecific changes in genome size and chromosome number lead to divergence and species evolution. Heavy metals disturb the cell cycle and cause mutations. Areas contaminated by heavy metals (metalliferous sites) are places where microevolutionary processes accelerate: very often only a few generations are enough for a new genotype to arise. This study, which continues our long-term research on Viola tricolor (Violaceae), a species occurring on both metalliferous (Zn, Pb, Cd, Cu) and non-metalliferous soils in Western and Central Europe, is aimed at determining the influence of environments polluted with heavy metals on genome size and karyological variability. The genome size of V. tricolor ranged from 3.801 to 4.203 pg, but the differences between metallicolous and non-metallicolous populations were not statistically significant. Altered chromosome numbers were significantly more frequent in material from the polluted sites than from the non-polluted sites (43% versus 28%). Besides the standard chromosome number (2n = 26), aneuploid cells with lower (2n = 18-25) or higher (2n = 27, 28) chromosome numbers were found in plants from both types of site, but polyploid (2n = 42) cells were observed only in plants from the metalliferous locality. The lack of correlation between chromosome variability in root meristematic cells and genome size estimated from peduncle cells can be attributed to elimination of somatic mutations in generative meristem, producing chromosome-stable non-meristematic tissues in the peduncle.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133