全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of the potential in radiation dose reduction for full-field digital mammography

DOI: 10.2478/v10013-008-0008-y

Keywords: Conventional mammography, digital mammography, contrast, dose reduction

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study evaluates the image quality for different radiation doses in full-field digital mammography (FFDM). The potential of dose reductions is evaluated for both, the transition from screen-film mammography (SFM) to FFDM as well as within FFDM due to the optimization of exposure parameters. Exposures of a 4.5 cm breast phantom rendering different contrasts as well as bar patterns were made using a FFDM system (GE Senographe 2000D). For different kVp and mAs settings as well as different target/filter combinations chosen for the above exposures, average glandular dose (AGD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were determined. To benchmark the results, relative change of AGD was evaluated against SNR, CNR and MTF. Eventually, the results were normalized to AGD's rendered by settings typically used in today's clinical routine. For standard settings (automatic mode), both FFDM and SFM deliver approximately the same AGD of about 2.2 mGy. From that, AGD reduction can be substantial in FFDM if only SNR and high contrast CNR are considered. In this case, reduction of up to 40% can be achieved in a wide kVp range if switching from the standard target/filter combination Mo/Rh to Rh/Rh. However, if low contrast CNR is to remain unchanged, dose reduction is practically impossible. The change of peak voltage and target/filter material had no influence on MTF. Assuming current CNR requirements as standards, significant dose reduction in FFDM cannot be achieved. Only by compromising low contrast CNR levels AGD of up to 40% can be saved at current standards of SNR and high contrast CNR.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413