全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Status and Prospects for Combined GPS LOD and VLBI UT1 Measurements

DOI: 10.2478/v10018-010-0006-7

Keywords: UT1, length of day, VLBI, GPS, Kalman filter

Full-Text   Cite this paper   Add to My Lib

Abstract:

A Kalman filter was developed to combine VLBI estimates of UT1-TAI with biased length of day (LOD) estimates from GPS. The VLBI results are the analyses of the NASA Goddard Space Flight Center group from 24-hr multi-station observing sessions several times per week and the nearly daily 1-hr single-baseline sessions. Daily GPS LOD estimates from the International GNSS Service (IGS) are combined with the VLBI UT1-TAI by modeling the natural excitation of LOD as the integral of a white noise process (i.e., as a random walk) and the UT1 variations as the integration of LOD, similar to the method described by Morabito et al. (1988). To account for GPS technique errors, which express themselves mostly as temporally correlated biases in the LOD measurements, a Gauss-Markov model has been added to assimilate the IGS data, together with a fortnightly sinusoidal term to capture errors in the IGS treatments of tidal effects. Evaluated against independent atmospheric and oceanic axial angular momentum (AAM + OAM) excitations and compared to other UT1/LOD combinations, ours performs best overall in terms of lowest RMS residual and highest correlation with (AAM + OAM) over sliding intervals down to 3 d. The IERS 05C04 and Bulletin A combinations show strong high-frequency smoothing and other problems. Until modified, the JPL SPACE series suffered in the high frequencies from not including any GPS-based LODs. We find, surprisingly, that further improvements are possible in the Kalman filter combination by selective rejection of some VLBI data. The best combined results are obtained by excluding all the 1-hr single-baseline UT1 data as well as those 24-hr UT1 measurements with formal errors greater than 5 μs (about 18% of the multi-baseline sessions). A rescaling of the VLBI formal errors, rather than rejection, was not an effective strategy. These results suggest that the UT1 errors of the 1-hr and weaker 24-hr VLBI sessions are non-Gaussian and more heterogeneous than expected, possibly due to the diversity of observing geometries used, other neglected systematic effects, or to the much shorter observational averaging interval of the single-baseline sessions. UT1 prediction services could benefit from better handling of VLBI inputs together with proper assimilation of IGS LOD products, including using the Ultra-rapid series that is updated four times daily with 15 hr delay.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133