全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant

DOI: 10.5923/j.ajbe.20120206.02

Keywords: Magnesium, Biological Corrosion, Biocompatibility, Alloys, Surface Modification

Full-Text   Cite this paper   Add to My Lib

Abstract:

Magnesium and magnesium based alloys are lightweight metallic materials that are extremely biocompatible and have similar mechanical properties to natural bone. These materials have the potential to function as an osteoconductive and biodegradable substitute in load bearing applications in the field of hard tissue engineering. However, the effects of corrosion and degradation in the physiological environment of the body has prevented their wide spread application to date. The aim of this review is to examine the properties, chemical stability, degradation in situ and methods of improving the corrosion resistance of magnesium and its alloys for potential application in the orthopaedic field. To be an effective implant, the surface and sub-surface properties of the material needs to be carefully selected so that the degradation kinetics of the implant can be efficiently controlled. Several surface modification techniques are presented and their effectiveness in reducing the corrosion rate and methods of controlling the degradation period are discussed. Ideally, balancing the gradual loss of material and mechanical strength during degradation, with the increasing strength and stability of the newly forming bone tissue is the ultimate goal. If this goal can be achieved, then orthopaedic implants manufactured from magnesium based alloys have the potential to deliver successful clinical outcomes without the need for revision surgery.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413