全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Linking ENSO and heavy rainfall events over coastal British Columbia through a weather pattern classification

DOI: 10.5194/hess-17-1475-2013

Full-Text   Cite this paper   Add to My Lib

Abstract:

We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC) macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwater Model (SIMGM), which represents an unconfined aquifer underlying the soil column. These estimates are compared to those resulting from basin-scale water balances derived exclusively from observational data and changes in terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE) satellites. Changes in simulated groundwater storage are then compared to those derived via baseflow recession analysis for 72 reference-quality watersheds. Finally, estimates are statistically analyzed for relationships to interannual streamflow anomalies, and predictive capacities are compared across storage terms. We find that both model simulations result in similar estimates of total basin storage change, that these estimates compare favorably with those obtained from basin-scale water balances and GRACE data, and that baseflow recession analyses are consistent with simulated changes in groundwater storage. Statistical analyses reveal essentially no relationship between groundwater storage and interannual streamflow anomalies, suggesting that operational seasonal streamflow forecasts, which do not account for groundwater conditions implicitly or explicitly, are likely not detrimentally affected by this omission in the Colorado River basin.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133