|
半导体学报 2013
A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices
|
Abstract:
We present a two-dimensional electron gas (2DEG) charge-control mobility variation based drain current model for sheet carrier density in the channel. The model was developed for the AlInGaN/AlN/GaN high-electron-mobility transistor. The sheet carrier density model used here accounts for the independence between the Fermi levels Ef and ns along with mobility for various Al and In molefractions. This physics based ns model fully depends upon the variation of Ef,u0, the first subband E0, the second subband E1, and ns. We present a physics based analytical drain current model using ns with the minimum set of parameters. The analytical results obtained are compared with the experimental results for four samples with various molefraction and barrier thickness. A good agreement between the results is obtained, thus validating the model.