全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Actuators  2012 

Square Wave Driver for Piezoceramic Actuators

DOI: 10.3390/act1010012

Keywords: piezoceramic actuator, piezoceramic capacitance, square wave driver, microfluidic valve

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present the circuit and performance of a square wave driver and power supply for piezoceramic actuators characterized by large capacitance, up to 3 μF. Capacitance of piezoceramic element is the key factor that limits the use of powerful actuators operating at high frequencies (kHz). It is thus important to build a driver that allows use of a possible wide set of actuators in the widest range of frequencies appropriate for the piezoelement. The driver that we report uses the properties of non-inductive resistors that allow for operation at high frequencies. Our report details the design, construction, tests and limitations of the device and its application to the control of a microfluidic valve.

References

[1]  Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem. Soc. Rev. 2010, 39, 1153–1182, doi:10.1039/b820557b. 20179830
[2]  The, S.-Y.; Lin, R.; Hung, L.-H.; Lee, A.P. Droplet microfluidics. Lab Chip 2008, 8, 198–220, doi:10.1039/b715524g.
[3]  Kelly, R.T. Advances in Microfluidics; InTech: Rijeka, Croatia, 2012. Available online: http://www.intechopen.com/books/advances-in-microfluidics (accessed on 7 March 2012).
[4]  Baek, J.Y.; Park, J.Y.; Ju, J.I.; Lee, T.S.; Lee, S.H. A pneumatically controllable flexible and polymeric microfluidic valve fabricated via in situ development. J. Micromech. Microeng. 2005, 15, 1015–1020, doi:10.1088/0960-1317/15/5/017.
[5]  Huang, M.C.; Ye, H.; Kuan, Y.K.; Li, M.-H.; Ying, J.Y. Integrated two-step gene synthesis in a microfluidic device. Lab Chip 2009, 9, 276–285, doi:10.1039/b807688j.
[6]  Churski, K.; Michalski, J.; Garstecki, P. Droplet on demand system utilizing a computer controlled microvalve integrated into a stiff polymeric microfluidic device. Lab Chip 2010, 10, 512–518, doi:10.1039/b915155a.
[7]  Laser, D.J.; Santiago, J.G. A review of micropumps. J. Micromech. Microeng. 2004, 14, R35–R64, doi:10.1088/0960-1317/14/6/R01.
[8]  Duggirala, R.; Son, I.S.; Lal, A. A Pyroelectric-Piezoelectric Valve for Integrated Microfluidics. In Proceedings of the 12th International Conference on Solid-State SensorsActuators and Microsystems (TRANSDUCERS 03), Boston, MA, USA, 8–12 June 2003; 2, pp. 1554–1557.
[9]  Lee, C.; Yang, E.H.; Saeidi, S.M.; Khodadadi, J.M. Fabrication, characterization, and computational modeling of a piezoelectrically actuated microvalve for liquid flow control. J. Microelectromech. Syst. 2006, 15, 686–696, doi:10.1109/JMEMS.2006.876783.
[10]  Ham, Y.B.; Seo, W.S.; Oh, S.J.; Park, J.H.; Yun, S.N.; Ahn, K.Y. Development of a piezoelectric pump for a highly-precise constant flow rate. J. Korean Phys. Soc. 2010, 57, 873–876, doi:10.3938/jkps.57.873.
[11]  Soerensen, O.; Drese, K.S.; Ehrfeld, W.; Hartmann, H.J. Micromachined Flow Handling Components—Micropumps. In Proceedings of the 2nd Conference on Chemical Microsensors and Applications, Boston, MA, USA, 19–20 September 1999; pp. 52–60.
[12]  Lee, C.J.; Sheen, H.J.; Chu, H.C.; Hsu, C.J.; Hu, T.H. The development of a triple-channel separator for particle removal with self-pumping oscillating flow. J. Micromech. Microeng. 2007, 17, 439–446, doi:10.1088/0960-1317/17/3/004.
[13]  Xu, J.; Attinger, D. Drop on demand in a microfluidic chip. J. Micromech. Microeng. 2008, 18, 065020, doi:10.1088/0960-1317/18/6/065020.
[14]  Chen, C.H.; Cho, S.H.; Tsai, F.; Erten, A.; Lo, Y.H. Microfluidic cell sorter with integrated piezoelectric actuator. Biomed. Microdev. 2009, 11, 1223–1231, doi:10.1007/s10544-009-9341-5.
[15]  Truckenmüller, R.; Ahrens, R.; Cheng, Y.; Fischer, G.; Saile, V. An ultrasonic welding based process for building up a new class of inert fluidic microsensors and -actuators from polymers. Sens. Actuat. A Phys. 2006, 132, 385–392, doi:10.1016/j.sna.2006.04.040.
[16]  Graf, N.J.; Bowser, M.T. A soft-polymer piezoelectric bimorph cantilever-actuated peristaltic Micro pump. Lab Chip 2008, 8, 1664–1670, doi:10.1039/b805252b.
[17]  Ham, Y.-B.; Seo, W.-S.; Oh, S.-J.; Park, J.-H.; Yun, S.-N.; Ahn, K.-Y. Development of a piezoelectric pump for a highly-precise constant flow rate. J. Korean Phys. Soc. 2010, 57, 873–876, doi:10.3938/jkps.57.873.
[18]  Kim, Y.S.; Kim, J.H.; Na, K.H.; Rhee, K. Experimental and numerical studies on the performance of a polydimethylsiloxane valveless micro pump. 2005, 219, 1139–1145, doi:10.1243/095440605X31887.
[19]  Kim, J.H.; Kang, C.J.; Kim, Y.-S. A disposable polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc. Microelectron. Eng. 2004, 71, 119–124, doi:10.1016/j.mee.2003.10.005.
[20]  Balogh, L. Design and application guide for high speed MOSFET gate drive circuits. Available online: http://www.ti.com/lit/ml/slup169/slup169.pdf (accessed on 3 April 2012).
[21]  PowerMOS transistor. Avalanche energy rated—IRF840. Philips Semiconductor Product Specification. Available online: http://www.datasheetcatalog.org/datasheet/philips/IRF840.pdf (accessed on 3 April 2012).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133