全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Actuators  2012 

Comprehensive Thermal Modeling of ElectroThermoElastic Microstructures

DOI: 10.3390/act1010021

Keywords: electrothermal modeling, MEMS, micro grasper, end-effector

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bent and folded beam configurations have been popularly used in electrothermoelastic (E-T) actuation. This paper introduces new designs of thermal end-effector with micro-grasping and micro-heating capabilities. We obtained analytical models for all possible steady state temperature responses of suspended and overhanging microstructures that constitute bent beam, folded beam, and combined actuators. Generally, the thermal response of E-T microstructures is sensitive to the boundary conditions, particularly for high power input. Thermal models have predicted the failure due to melting, which is the most common reason for failure of E-T devices, and it often occurs in the longest and the thinnest microstructure.

References

[1]  Luo, J.K.; Flewitt, A.J.; Spearing, S.M.; Fleck, N.A. Comparison of microtweezers based on three lateral thermal actuator configurations. J. Micromech. Microeng. 2005, 15, 1294–1302, doi:10.1088/0960-1317/15/6/022.
[2]  Mankame, N.D.; Ananthasuresh1, G.K. Comprehensive thermal modeling and characterization of anelectro-thermal-compliant microactuator. J. Micromech. Microeng. 2001, 11, 452–462, doi:10.1088/0960-1317/11/5/303.
[3]  Riethmuller, W.; Benecke, W. Thermally excited silicon microactuators. IEEE Trans. Electron. Devices 1988, 35, 758–763, doi:10.1109/16.2528.
[4]  Pany, C.; Hsu, W. An electro-thermally and laterally driven polysilicon microactuator. J. Micromech. Microeng. 1997, 7, 7–13, doi:10.1088/0960-1317/7/1/003.
[5]  Field, L.A.; Burriesci, D.L.; Robrish, P.R.; Ruby, R.C. Micromachined 1 × 2 optical-fiber switch. Sens. Actuators A 1996, 53, 311–315, doi:10.1016/0924-4247(96)80154-3.
[6]  Huang, Q.-A.; Ka, N.; Lee, S. Analysis and design of polysilicon thermal flexure actuator. J. Micromech. Microeng. 1999, 9, 64–70.
[7]  Mayyas, M.; Stephanou, H. Electrothermoelastic modeling of MEMS gripper. Microsyst. Technol. 2009, 15, 637–646, doi:10.1007/s00542-008-0752-7.
[8]  Lin, L.W.; Chiao, M. Electrothermal responses of lineshape microstructures. Sens. Actuators A 1996, 55, 35–41, doi:10.1016/S0924-4247(96)01247-2.
[9]  Lee, W.H.; Kang, B.H.; Oh, Y.S.; Stephanou, H.; Sanderson, A.C.; Skidmore, G.; Ellis, M. Micropeg Manipulation with a Compliant Microgripper. In Proceedings of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 14–19 September 2003; pp. 3213–3218.
[10]  Mayyas, M.; Shiakolas, P.S.; Lee, W.H.; Popa, D.; Stephanou, H. Static and Dynamic Modeling of Thermal Microgripper. In Proceedings of the 14th Mediterranean Conference on Control and Automation (MED ’06), Ancona, Italy, 28–30 June 2006.
[11]  Mayyas, M.; Zhang, P.; Lee, W.H.; Shiakolas, P.; Popa, D. Design Tradeoffs for Electrothermal Microgrippers. In Proceedings of IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007.
[12]  Lerch, P.; Slimane, C.K.; Romanowicz, B.; Renaud, P. Modelization and characterization of asymmetrical thermal microactuators. J. Micromech. Microeng. 1996, 6, 134–137, doi:10.1088/0960-1317/6/1/033.
[13]  Mayyas, M.; Shiakolas, P. A Study on the Thermal Behavior of Electrothermal Microactuators Due to Various Voltage Inputs. In Proceedings of ASME IMECE, IMECE2006-15321, Chicago, IL, USA, 5–10 November 2006.
[14]  Butler, J.T.; Bright, V.M.; Cowan, W.D. Average power control and positioning of polysilicon thermal actuators. Sens. Actuators 1999, 72, 88–97, doi:10.1016/S0924-4247(98)00211-8.
[15]  Brnas, D.M.; Bright, V.M. Design and performance of a double hot arm polysilicon thermal actuator. Proc. SPIE 1997, 3224, 296–306.
[16]  Uma, S.; McConnell, A.D.; Asheghi, M.; Kurabayashi, K.; Goodson, K.E. Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers. Int. J. Thermophys. 2001, 22, doi:10.1023/A:1010791302387.
[17]  Polder, D.; Hove, M.V. Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 1971, 4, 3303–3314, doi:10.1103/PhysRevB.4.3303.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413