全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nucleic Acid Based Fluorinated Derivatives: New Tools for Biomedical Applications

DOI: 10.3390/app2020245

Keywords: fluorocarbon, amphiphile, lipids, nucleoside, oligonucleotides

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nucleic acid-based fluorinated derivatives, e.g., nucleosides or oligonucleotides connected to highly fluorinated chains or labeled with one or more fluorine atoms, have been investigated recently due to their high potential for biomedical applications. This review deals with recent works on nucleoside and oligonucleotide fluorocarbon amphiphiles as well as with properties and applications of fluorine-labeled oligonucleotide analogues.

References

[1]  Watson, J.D. A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738, doi:10.1038/171737a0.
[2]  Franklin, R.E. Molecular configuration in sodium thymonucleate. Nature 1953, 171, 740–741, doi:10.1038/171740a0. 13054694
[3]  Wilkins, M.H.F. Molecular structure of deoxypentose nucleic acids. Nature 1953, 171, 738–740, doi:10.1038/171738a0.
[4]  Sessler, J.L.; Lawrence, C.M.; Jayawickramarajah, J.G.M. Molecular recognition via base-pairing. Chem. Soc. Rev. 2007, 36, 314–325, doi:10.1039/b604119c. 17264932
[5]  Whitesides, G.M.; Mathias, J.P.; Seto, C.T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319, doi:10.1126/science.1962191. 1962191
[6]  Bowden, N.; Terfort, A.; Carbeck, J.; Whitesides, G.M. Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 1997, 276, 233–235, doi:10.1126/science.276.5310.233. 9092466
[7]  Rosemeyer, H. Nucleolipids: Natural occurrence, synthesis, molecular recognition, and supramolecular assemblies as potential precursors of life and bioorganic materials. Chem. Biodivers. 2005, 2, 977–1062, doi:10.1002/cbdv.200590082.
[8]  Gissot, A.; Camplo, M.; Grinstaff, M.W.; Barthélémy, P. Nucleoside, nucleotide and oligonucleotide based amphiphiles: A successful marriage of nucleic acids with lipids. Org. Biomol. Chem. 2008, 6, 1324–1333, doi:10.1039/b719280k.
[9]  Ahlers, M.; Ringsdorf, H.; Rosemeyer, H.; Seela, F. Orientation, recognition, and photoreaction of nucleolipids in model membranes. Colloid Polym. Sci. 1990, 268, 132–142, doi:10.1007/BF01513191.
[10]  Huang, J.; Li, C.; Liang, Y. FT-SERS studies on molecular recognition capabilities of monolayers of novel nucleolipid amphiphiles. Langmuir 2000, 16, 3937–3940, doi:10.1021/la990947i.
[11]  Lebeau, L.; Olland, S.; Oudet, P.; Mioskowski, C. Rational design and synthesis of phospholipids for the two-dimensional crystallization of DNA gyrase, a key element in chromosome organization. Chem. Phys. Lipid 1992, 62, 93–103, doi:10.1016/0009-3084(92)90087-6.
[12]  Barthélémy, P.; Lee, S.J.; Grinstaff, M. Supramolecular assemblies with DNA. Pure Appl. Chem. 2005, 77, 2133–2148, doi:10.1351/pac200577122133.
[13]  Berti, D.; Franchi, L.; Baglioni, P.; Luisi, P.L. Molecular recognition in monolayers. Complementary base pairing in dioleoylphosphatidyl derivatives of adenosine, uridine, and cytidine. Langmuir 1997, 13, 3438–3444, doi:10.1021/la970334a.
[14]  Baglioni, P.; Berti, D. Self assembly in micelles combining stacking and H-bonding. Curr. Opin. Colloid Interface Sci. 2003, 8, 55–61, doi:10.1016/S1359-0294(03)00015-3.
[15]  Fortini, M.; Berti, D.; Baglioni, P.; Ninham, B.W. Specific anion effects on the aggregation properties of anionic nucleolipids. Curr. Opin. Colloid Interface Sci. 2004, 9, 168–172, doi:10.1016/j.cocis.2004.05.025.
[16]  Mulet, X.; Kaasgaard, T.; Conn, C.E.; Waddington, L.J.; Kennedy, D.F.; Weerawardena, A.; Drummond, C.J. Nanostructured nonionic thymidine nucleolipid self-assembly materials. Langmuir 2010, 26, 18415–18423, doi:10.1021/la103370q. 21058676
[17]  Murgia, S.; Lampis, S.; Angius, R.; Berti, D.; Monduzzi, M. Orientation and specific interactions of nucleotides and nucleolipids inside monoolein-based liquid crystals. J. Phys. Chem. B 2009, 113, 9205–9215, doi:10.1021/jp9035474.
[18]  Godeau, G.; Barthe?le?my, P. Glycosyl-nucleoside lipids as low-molecular-weight gelators. Langmuir 2009, 25, 8447–8450, doi:10.1021/la900140b.
[19]  Khiati, S.; Luvino, D.; Oumzil, K.; Chauffert, B.; Camplo, M.; Barthélémy, P. Nucleoside-lipid-based nanoparticles for cisplatin delivery. ACS Nano 2011, 5, 8649–8655, doi:10.1021/nn202291k.
[20]  Hong, C.I.; Nechaev, A.; Kirisits, A.J.; Vig, R.; West, C.R.; Manouilov, K.K.; Chu, C.K. Synthesis and biological activity of anti-HIV nucleoside conjugates of ether and thioether phospholipids. J. Med. Chem. 1996, 39, 1771–1777, doi:10.1021/jm950620o.
[21]  Ambike, A.; Rosilio, V.; Stella, B.; Lepétre-Mouelhi, S.; Couvreur, P. Interaction of self-assembled squalenoyl gemcitabine nanoparticles with phospholipid?cholesterol monolayers mimicking a biomembrane. Langmuir 2011, 27, 4891–4899, doi:10.1021/la200002d. 21413743
[22]  Riess, J.G. Highly fluorinated amphiphilic molecules and self-assemblies with biomedical potential. Curr. Opin. Colloid Interface Sci. 2009, 14, 294–304, doi:10.1016/j.cocis.2009.05.008.
[23]  Krafft, M.P. Controlling phospholipid self-assembly and film properties using highly fluorinated components—Fluorinated monolayers, vesicles, emulsions and microbubbles. Biochimie 2012, 94, 11–25. 21816205
[24]  Krafft, M.P.; Riess, J.G. Highly fluorinated amphiphiles and colloidal systems, and their applications in the biomedical field. A contribution. Biochimie 1998, 80, 489–514, doi:10.1016/S0300-9084(00)80016-4.
[25]  Riess, J.G.; Krafft, M.P. Fluorinated phosphocholine-based amphiphiles as components of fluorocarbon emulsions and fluorinated vesicles. Chem. Phys. Lipids 1995, 75, 1–14, doi:10.1016/0009-3084(94)02402-Q.
[26]  Held, P.; Lach, F.; Lebeau, L.; Mioskowski, C. Synthesis and preliminary evaluation of a new class of fluorinated amphiphiles designed for in-plane immobilisation of biological macromolecules. Tetrahedron Lett. 1997, 38, 1937–1940, doi:10.1016/S0040-4039(97)00258-X.
[27]  Lebeau, L.; Lach, F.; Vénien-Bryan, C.; Renault, A.; Dietrich, J.; Jahn, T.; Palmgren, M.G.; Kühlbrandt, W.; Mioskowski, C. Two-dimensional crystallization of a membrane protein on a detergent-resistant lipid monolayer. J. Mol. Biol. 2001, 308, 639–647, doi:10.1006/jmbi.2001.4629.
[28]  Courty, S.; Lebeau, L.; Martel, L.; Lenné, P.-F.; Balavoine, F.; Dischert, W.; Konovalov, O.; Mioskowski, C.; Legrand, J.-F.; Vénien-Bryan, C. Two-dimensional crystallization of a histidine-tagged protein on monolayers of fluidity-enhanced Ni2+-chelating lipids. Langmuir 2002, 18, 9502–9512, doi:10.1021/la026261z.
[29]  Clary, L.; Gadras, C.; Greiner, J.; Rolland, J.-P.; Santaella, C.; Vierling, P.; Gulik, A. Phase behavior of fluorocarbon and hydrocarbon double-chain hydroxylated and galactosylated amphiphiles and bolaamphiphiles. Long-term shelf-stability of their liposomes. Chem. Phys. Lipids 1999, 99, 125–137, doi:10.1016/S0009-3084(99)00032-8.
[30]  Pasc-Banu, A.; Blanzat, M.; Belloni, M.; Perez, E.; Mingotaud, C.; Rico-Lattes, I.; Labrot, T.; Oda, R. Spontaneous vesicles of single-chain sugar-based fluorocarbon surfactants. J. Fluor. Chem. 2005, 126, 33–38, doi:10.1016/j.jfluchem.2004.10.004.
[31]  Roytman, R.; Adler-Abramovich, L.; Ajish, K.S.; Kuan, T.-C.; Lin, C.-C.; Gazit, E.; Brik, A. Exploring the self-assembly of glycopeptides using a diphenylalanine scaffold. Org. Biomol. Chem. 2011, 9, 5755–5761, doi:10.1039/c1ob05071k. 21720631
[32]  Platen, T.; Schüler, T.; Tremel, W.; Hoffmann-R?der, A. Synthesis and antibody bonding of higly fluorinated amphiphilic MUC1 glycopeptide antigens. Eur. J. Org. Chem. 2011, 3878–3887.
[33]  Riess, J.G. Fluorinated vesicles. J. Drug Target. 1994, 2, 455–468, doi:10.3109/10611869408996822.
[34]  Fabio, K.; Di Giorgio, C.; Vierling, P. New perfluorinated polycationic dimerizable detergents for the formulation of monomolecular DNA nanoparticles and their in vitro transfection efficiency. Biochim. Biophys. Acta 1724, 203–214.
[35]  Klein, E.; Leborgne, C.; Ciobanu, M.; Klein, J.; Frisch, B.; Pons, F.; Zuber, G.; Scherman, D.; Kichler, A.; Lebeau, L. Nucleic acid transfer with hemifluorinated polycationic lipids. Biomaterials 2010, 31, 4781–4788, doi:10.1016/j.biomaterials.2010.02.047. 20303166
[36]  Klein, E.; Ciobanu, M.; Klein, J.; MacHi, V.; Leborgne, C.; Vandamme, T.; Frisch, B.; Pons, F.; Kichler, A.; Zuber, G.; Lebeau, L. "HFP" fluorinated cationic lipids for enhanced lipoplex stability and gene delivery. Bioconjug. Chem. 2010, 21, 360–371, doi:10.1021/bc900469z.
[37]  Berti, D.; Montis, C.; Baglioni, P. Self-assembly of designer biosurfactants. Soft Matter 2011, 7, 7150–7158, doi:10.1039/c1sm05197k.
[38]  Wang, Y.; Moreau, L.; Barthélémy, P.; El Maataoui, M.; Grinstaff, M.W. Supramolecular assemblies of nucleoside phosphocholine amphiphiles. J. Am. Chem. Soc. 2004, 126, 7533–7539, doi:10.1021/ja039597j. 15198600
[39]  Desbat, B.; Manet, S.; Aimé, C.; Labrot, T.; Oda, R. Aggregation behaviors of gemini nucleotide at the air-water interface and in solutions induced by adenine-uracil interaction. J. Colloid Interface Sci. 2005, 283, 555–564, doi:10.1016/j.jcis.2004.09.003.
[40]  Pincet, F.; Perez, E.; Bryant, G.; Lebeau, L.; Mioskowski, C. Long-range attraction between nucleosides with short-range specificity: Direct measurements. Phys. Rev. Lett. 1994, 73, 2780–2783, doi:10.1103/PhysRevLett.73.2780.
[41]  Pincet, F.; Perez, E.; Lebeau, L.; Mioskowski, C. Long range H-bond specific interactions between nucleosides. J. Chem. Soc. Faraday Trans. 1995, 91, 4329–4330, doi:10.1039/ft9959104329.
[42]  Pincet, F.; Perez, E.; Bryant, G.; Lebeau, L.; Mioskowski, C. Specific forces between DNA bases. Mod. Phys. Lett. B 1996, 10, 81–90, doi:10.1142/S0217984996000122.
[43]  Pincet, F.; Rawicz, W.; Perez, E.; Lebeau, L.; Mioskowski, C.; Evans, E. Electrostatic nanotitration of weak biochemical bonds. Phys. Rev. Lett. 1997, 79, 1949–1952, doi:10.1103/PhysRevLett.79.1949.
[44]  Pincet, F.; Lebeau, L.; Cribier, S. Short-range specific forces are able to induce hemifusion. Eur. Biophys. J. 2001, 30, 91–97, doi:10.1007/s002490100131.
[45]  Perez, E.; Pincet, F.; Goldmann, M.; Mioskowski, C.; Lebeau, L. Translational order in liquid-expanded lipid monolayers functionalized with nucleosides. Eur. Phys. J. B 1998, 6, 1–4, doi:10.1007/s100510050519.
[46]  Tareste, D.; Pincet, F.; Perez, E.; Rickling, S.; Mioskowski, C.; Lebeau, L. Energy of hydrogen bonds probed by the adhesion of functionalized lipid layers. Biophys. J. 2002, 83, 3675–3681, doi:10.1016/S0006-3495(02)75367-8.
[47]  Tareste, D.; Pincet, F.; Lebeau, L.; Perez, é. Hydrophobic forces and hydrogen bonds in the adhesion between retinoid-coated surfaces. Langmuir 2007, 23, 3225–3229, doi:10.1021/la0629779.
[48]  Yang, H.W.; Yi, J.W.; Bang, E.-K.; Jeon, E.M.; Kim, B.H. Cationic nucleolipids as efficient siRNA carriers. Org. Biomol. Chem. 2011, 9, 291–296, doi:10.1039/c0ob00580k. 21082158
[49]  Ceballos, C.; Khiati, S.; Prata, C.A.; Zhang, X.X.; Giorgio, S.; Marsal, P.; Grinstaff, M.W.; Barthélémy, P.; Camplo, M. Cationic nucleoside lipids derived from universal bases: A rational approach for siRNA transfection. Bioconjug. Chem. 2010, 21, 1062–1069, doi:10.1021/bc100005k.
[50]  Moreau, L.; Barthélémy, P.; Li, Y.; Luo, D.; Prata, C.A.H.; Grinstaff, M.W. Nucleoside Phosphocholine Amphiphile for in vitro DNA transfection. Mol. BioSyst. 2005, 1, 260–264, doi:10.1039/b503302k.
[51]  Chabaud, P.; Camplo, M.; Payet, D.; Serin, G.; Moreau, L.; Barthélémy, P.; Grinstaff, M.W. Cationic nucleoside lipids for gene delivery. Bioconjug. Chem. 2006, 17, 466–472, doi:10.1021/bc050162q.
[52]  Céballos, C.; Khiati, S.; Barthélémy, P.; Camplo, M. Acyclic anionic nucleolipids for DNA delivery. J. Nanosci. Lett. 2012, 2, 20.
[53]  Khiati, S.; Pierre, N.; Andriamanarivo, S.; Grinstaff, M.W.; Arazam, N.; Nallet, F.; Navailles, L.; Barthélémy, P. Anionic nucleotide-lipids for in vitro DNA transfection. Bioconjug. Chem. 2009, 20, 1765–1772, doi:10.1021/bc900163s.
[54]  Moreau, L.; Barthélémy, P.; El Maataoui, M.; Grinstaff, M.W. Supramolecular assemblies of nucleoside phosphocholine amphiphiles. J. Am. Chem. Soc. 2004, 126, 7533–7539, doi:10.1021/ja039597j. 15198600
[55]  Moreau, L.; Campins, N.; Grinstaff, M.W.; Barthélémy, P. A fluorocarbon nucleoamphiphile for the construction of actinide loaded microspheres. Tetrahedron Lett. 2006, 47, 7117–7120, doi:10.1016/j.tetlet.2006.06.182.
[56]  Godeau, G.; Barthélémy, P. Glycosyl-nucleoside lipids as low-molecular-weight gelators. Langmuir 2009, 25, 8447–8450, doi:10.1021/la900140b.
[57]  Godeau, G.; Bernard, L.; Staedel, C.; Barthélémy, P. Glycosyl-nucleoside-lipid based supramolecular assembly as a nanostructured material with nucleic acid delivery capabilities. Chem. Commun. 2009, 34, 5127–5129.
[58]  Godeau, G.; Brun, C.; Arnion, H.; Staedel, C.; Barthélémy, P. Glycosyl-nucleoside fluorinated amphiphiles as compoents of nanostructured hydrogels. Tetrahedron Lett. 2010, 51, 1012–1015, doi:10.1016/j.tetlet.2009.12.042.
[59]  Studer, A.; Hadida, S.; Ferritto, R.; Kim, S.-Y.; Jeger, P.; Wipf, P.; Curran, D.P. Fluorous synthesis: A fluorous-phase strategy for improving separation efficiency in organic synthesis. Science 1997, 275, 823–826, doi:10.1126/science.275.5301.823.
[60]  Pongdee, R.; Liu, H.-W. Elucidation of enzyme mechanisms using fluorinated substrate analogues. Bioorg. Chem. 2004, 32, 393–437, doi:10.1016/j.bioorg.2004.06.012.
[61]  Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: Looking beyond intuition. Science 2007, 317, 1881–1886, doi:10.1126/science.1131943. 17901324
[62]  Curran, D.P. Chemistry: Fluorous tags unstick messy chemical biology problems. Science 2008, 321, 1645–1646, doi:10.1126/science.1158721.
[63]  Godeau, G.; Arnion, H.; Brun, C.; Staedel, C.; Barthélémy, P. Fluorocarbon oligonucleotide conjugates for nucleic acids delivery. Med. Chem. Commun. 2010, 1, 76–78, doi:10.1039/c0md00054j.
[64]  Patwa, A.; Gissot, A.; Bestel, I.; Barthélémy, P. Hybrid lipid oligonucleotide conjugates: Synthesis, self-assemblies and biomedical applications. Chem. Soc. Rev. 2011, 40, 5844–5854, doi:10.1039/c1cs15038c.
[65]  Godeau, G.; Staedel, C.; Barthélémy, P. Lipid-conjugated oligonucleotides via “click chemistry” efficiently inhibit hepatitis C virus translation. J. Med. Chem. 2008, 51, 4374–4376, doi:10.1021/jm800518u.
[66]  Huisgen, R. 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, NY ,USA, 1984; Volume 1, pp. 1–176.
[67]  Schmidt, S.; Niemann, A.; Krynetskaya, N.F.; Oretskaya, T.S.; Metelev, V.G.; Suchomlinov, V.V.; Shabarova, Z.A.; Cech, D. The use of oligonucleotide probes containing 2'-deoxy-2'-fluoronucleosides for regiospecific cleavage of RNA by RNase H from Escherichia coli. Biochim. Biophys. Acta 1130, 41–46.
[68]  Kawasaki, A.M.; Casper, M.D.; Freier, S.M.; Lesnik, E.A.; Zounes, M.C.; Cummins, L.L.; Gonzalez, C.; Dan Cook, P. Uniformly modified 2′-deoxy-2′-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J. Med. Chem. 1993, 36, 831–841, doi:10.1021/jm00059a007.
[69]  Kois, P.; Tocik, Z.; Spassova, M.; Ren, W.-Y.; Rosenberg, I.; Soler, J.F.; Watanabe, K.A. Synthesis and some properties of modified oligonucleotides. 2. oligonucleotides containing 2'-deoxy-2'-fluoro-β-D-arabinofuranosyl pyrimidine nucleosides. Nucleosides Nucleotides 1993, 12, 1093–1109, doi:10.1080/07328319308016207.
[70]  Rosenberg, I.; Soler, J.F.; Tocik, Z.; Ren, W.-Y.; Ciszewski, L.A.; Kois, P.; Pankiewicz, K.W.; Spassova, M.; Watanabe, K.A. Synthesis of oligodeoxynucleotides containing the C-nucleoside and 2'- deoxy-2'-fluoro-ara-nucleoside moieties by the H-phosphonate method. Nucleosides Nucleotides 1993, 12, 381–401, doi:10.1080/07328319308017834.
[71]  Reif, B.; Wittmann, V.; Schwalbe, H.; Griesinger, C.; W?rner, K.; Jahn-Hofmann, K.; Engels, J.W.; Bermel, W. 132. Structural comparison of oligoribonucleotides and their 2′-deoxy-2′-fluoro analogs by heteronuclear NMR spectroscopy. Helv. Chim. Acta 1997, 80, 1952–1971, doi:10.1002/hlca.19970800614.
[72]  Damha, M.J.; Wilds, C.J.; Noronha, A.; Brukner, I.; Borkow, G.; Arion, D.; Parniak, M.A. Hybrids of RNA and arabinonucleic acids (ANA and 2'F-ANA) are substrates of ribonuclease H. J. Am. Chem. Soc. 1998, 120, 12976–12977, doi:10.1021/ja982325+.
[73]  Wilds, C.J.; Damha, M.J. Duplex recognition by oligonucleotides containing 2'-deoxy-2'-fluoro-D-arabinose and 2'-deoxy-2'-fluoro-D-ribose. Intermolecular 2'-OH-phosphate contacts versus sugar puckering in the stabilization of triple-helical complexes. Bioconjugate Chem. 1999, 10, 299–305, doi:10.1021/bc9801171.
[74]  Wilds, C.J.; Damha, M.J. 2'-Deoxy-2'-fluoro-β-D-arabinonucleosides and oligonucleotides (2'F-ANA): Synthesis and physicochemical studies. Nucleic Acids Res. 2000, 28, 3625–3635, doi:10.1093/nar/28.18.3625.
[75]  Damha, M.J.; Noronha, A.M.; Wilds, C.J.; Trempe, J.-F.; Denisov, A.; Pon, R.T.; Gehring, K. Properties of arabinonucleic acids (ANA & 20′F-ANA): Implications for the design of antisense therapeutics that invoke RNase H cleavage of RNA. Nucleosides Nucleotides Nucleic Acids 2001, 20, 429–440, doi:10.1081/NCN-100002317.
[76]  Denisov, A.Yu.; Noronha, A.M.; Wilds, C.J.; Trempe, J.-F.; Pon, R.T.; Gehring, K.; Damha, M.J. Solution structure of an arabinonucleic acid (ANA)/RNA duplex in a chimeric hairpin: Comparison with 2′-fluoro-ANA/RNA and DNA/RNA hybrids. Nucleic Acids Res. 2001, 29, 4284–4293, doi:10.1093/nar/29.21.4284.
[77]  Lok, C.-N.; Viazovkina, E.; Min, K.-L.; Nagy, E.; Wilds, C.J.; Damha, M.J.; Parniak, M.A. Potent gene-specific inhibitory properties of mixed-backbone antisense oligonucleotides comprised of 2′-deoxy-2′-fluoro-D-arabinose and 2′-deoxyribose nucleotides. Biochemistry 2002, 41, 3457–3467, doi:10.1021/bi0115075. 11876654
[78]  Doi, Y.; Katafuchi, A.; Fujiwara, Y.; Hitomi, K.; Tainer, J.A.; Ide, H.; Iwai, S. Synthesis and characterization of oligonucleotides containing 2′-fluorinated thymidine glycol as inhibitors of the endonuclease III reaction. Nucleic Acids Res. 2006, 34, 1540–1551, doi:10.1093/nar/gkl061.
[79]  Dowler, T.; Bergeron, D.; Tedeschi, A.-L.; Paquet, L.; Ferrari, N.; Damha, M.J. Improvements in siRNA properties mediated by 2′-deoxy-2′-fluoro-β-D-arabinonucleic acid (FANA). Nucleic Acids Res. 2006, 34, 1669–1675, doi:10.1093/nar/gkl033.
[80]  Watts, J.K.; Choubdar, N.; Sadalapure, K.; Robert, F.; Wahba, A.S.; Pelletier, J.; Pinto, B.M.; Damha, M.J. 2′-Fluoro-4′-thioarabino-modified oligonucleotides: Conformational switches linked to siRNA activity. Nucleic Acids Res. 2007, 35, 1441–1451, doi:10.1093/nar/gkl1153.
[81]  Peng, C.G.; Damha, M.J. Polymerase-directed synthesis of 2′-deoxy-2′-fluoro-β-D- arabinonucleic acids. J. Am. Chem. Soc. 2007, 129, 5310–5311, doi:10.1021/ja069100g.
[82]  Peng, C.G.; Damha, M.J. G-quadruplex induced stabilization by 2′-deoxy-2′-fluoro-d-arabinonucleic acids (2′F-ANA). Nucleic Acids Res. 2007, 35, 4977–4988, doi:10.1093/nar/gkm520.
[83]  Watts, J.K.; Martín-Pintado, N.; Gómez-Pinto, I.; Schwartzentruber, J.; Portella, G.; Orozco, M.; González, C.; Damha, M.J. Differential stability of 2′F-ANA?RNA and ANA?RNA hybrid duplexes: Roles of structure, pseudohydrogen bonding, hydration, ion uptake and flexibility. Nucleic Acids Res. 2010, 38, 2498–2511, doi:10.1093/nar/gkp1225. 20071751
[84]  Deleavey, G.F.; Watts, J.K.; Alain, T.; Robert, F.; Kalota, A.; Aishwarya, V.; Pelletier, J.; Gewirtz, A.M.; Sonenberg, N.; Damha, M.J. Synergistic effects between analogs of DNA and RNA improve the potency of siRNA-mediated gene silencing. Nucleic Acids Res. 2010, 38, 4547–4557, doi:10.1093/nar/gkq181. 20413581
[85]  Erande, N.; Gunjal, A.D.; Fernandes, M.; Kumar, V.A. Probing the furanose conformation in the 2’-5’ strand of isoDNA:RNA duplexes by freezing the nucleoside conformations. Chem. Commun. 2011, 47, 4007–4009, doi:10.1039/c0cc05402j.
[86]  Parsch, J.; Engels, J.W. Synthesis of fluorobenzene and benzimidazole nucleic-acid analogues and their influence on stability of RNA duplexes. Helv. Chim. Acta 2000, 83, 1791–1808, doi:10.1002/1522-2675(20000809)83:8<1791::AID-HLCA1791>3.0.CO;2-K.
[87]  Parsch, J.; Engels, J.W. C–F … H–C hydrogen bonds in ribonucleic acids. J. Am. Chem. Soc. 2002, 124, 5664–5672, doi:10.1021/ja012116g.
[88]  Rastinejad, F.; Evilia, C.; Lu, P. Studies of nucleic acids and their protein interactions by 19F NMR. Methods Enzymol. 1995, 261, 560–575, doi:10.1016/S0076-6879(95)61025-1.
[89]  Rastinejad, F.; Lu, P. Bacteriophage T7 RNA polymerase. 19F-nuclear magnetic resonance observations at 5-fluorouracil-substituted promoter DNA and RNA transcript. J. Mol. Biol. 1993, 232, 105–122, doi:10.1006/jmbi.1993.1373.
[90]  Chu, W.-C.; Feiz, V.; Derrick, W.B.; Horowitz, J. Fluorine-19 nuclear magnetic resonance as a probe of the solution structure of mutants of 5-Fluorouracil-substituted Escherichia coli valine tRNA. J. Mol. Biol. 1992, 227, 1164–1172, doi:10.1016/0022-2836(92)90528-R.
[91]  Chu, W.-C.; Horowitz, J. Fluorine-19 NMR studies of the thermal unfolding of 5-fluorouracil-substituted Escherichia coli valine transfer RNA. FEBS Lett. 1991, 295, 159–162, doi:10.1016/0014-5793(91)81408-Z.
[92]  Parisot, D.; Malet-Martino, M.C.; Martino, R.; Crasnier, P. 19F nuclear magnetic resonance analysis of 5-fluorouracil metabolism in four differently pigmented strains of Nectria haematococca. Appl. Environ. Microbil. 1991, 57, 3605–3612.
[93]  Tanabe, K.; Sugiura, M.; Nishimoto, S.-I. Monitoring of duplex and triplex formation by 19F NMR using oligodeoxynucleotides possessing 5-fluorodeoxyuridine unit as 19F signal transmitter. Bioorg. Med. Chem. 2010, 18, 6690–6694, doi:10.1016/j.bmc.2010.07.066.
[94]  Danielson, M.A.; Falke, J.J. Use of 19F NMR to probe protein structure and conformational changes. Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 163–195, doi:10.1146/annurev.bb.25.060196.001115.
[95]  Barhate, N.B.; Barhate, R.N.; Cekan, P.; Drobny, G.; Sigurdsson, S.Th. A nonafluoro nucleoside as a sensitive 19F NMR probe of nucleic acid conformation. Org. Lett. 2008, 10, 2745–2747, doi:10.1021/ol800872a.
[96]  Dollé, F.; Hinnen, F.; Vaufrey, F.; Tavitian, B.; Crouzel, C. A general method for labeling oligodeoxynucleotides with 18F for in vivo PET imaging. J. Label. Compd. Radiopharm. 1997, 39, 319–330, doi:10.1002/(SICI)1099-1344(199704)39:4<319::AID-JLCR970>3.0.CO;2-7.
[97]  Tavitian, B.; Terrazzino, S.; Kühnast, B.; Marzabal, S.; Stettler, O.; Dollé, F.; Deverre, J.-R.; Jobert, A.; Hinnen, F.; Bendriem, B.; et al. In vivo imaging of oligonucleotides with positron emission tomography. Nat. Med. 1998, 4, 467–470, doi:10.1038/nm0498-467.
[98]  Kuhnast, B.; Dollé, F.; Vaufrey, F.; Hinnen, F.; Crouzel, C.; Tavitian, B. Fluorine-18 labeling of oligonucleotides bearing chemically-modified ribose-phosphate backbones. J. Label. Compd. Radiopharm. 2000, 43, 837–848, doi:10.1002/1099-1344(200007)43:8<837::AID-JLCR368>3.0.CO;2-2.
[99]  Kuhnast, B.; Hinnen, F.; Boisgard, R.; Tavitian, B.; Dollé, F. Fluorine-18 labelling of oligonucleotides: Prosthetic labelling at the 5′-end using the N-(4-[18F]fluorobenzyl)-2-bromoacetamide reagent. J. Label. Compd. Radiopharm. 2003, 46, 1093–1103, doi:10.1002/jlcr.742.
[100]  Viel, T.; Kuhnast, B.; Hinnen, F.; Boisgard, R.; Tavitian, B.; Dollé, F. Fluorine-18 labelling of small interfering RNAs (siRNAs) for PET imaging. J. Label. Compd. Radiopharm. 2007, 50, 1159–1168, doi:10.1002/jlcr.1411.
[101]  Hedberg, E.; L?ngstr?m, B. 18F-labelling of oligonucleotides using succinimido 4-[18F]fluorobenzoate. Acta Chem. Scand. 1998, 52, 1034–1039, doi:10.3891/acta.chem.scand.52-1034.
[102]  Pan, D.; Gambhir, S.S.; Toyokuni, T.; Iyer, M.R.; Acharya, N.; Phelps, M.E.; Barrio, J.R. Rapid synthesis of a 5'-fluorinated oligodeoxy-nucleotide: A model antisense probe for use in imaging with positron emission tomography (PET). Bioorg. Med. Chem. Lett. 1998, 8, 1317–1320, doi:10.1016/S0960-894X(98)00239-X.
[103]  Mercier, F.; Paris, J.; Kaisin, G.; Thonon, D.; Flagothier, J.; Teller, N.; Lemaire, C.; Luxen, A. General method for labeling siRNA by click chemistry with fluorine-18 for the purpose of PET imaging. Bioconjug. Chem. 2011, 22, 108–114, doi:10.1021/bc100263y.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133