全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibiotics  2012 

Multidrug Efflux Systems in Helicobacter cinaedi

DOI: 10.3390/antibiotics1010029

Keywords: Helicobacter cinaedi, efflux, antimicrobial resistance

Full-Text   Cite this paper   Add to My Lib

Abstract:

Helicobacter cinaedi causes infections, such as bacteremia, diarrhea and cellulitis in mainly immunocompromised patients. This pathogen is often problematic to analyze, and insufficient information is available, because it grows slowly and poorly in subculture under a microaerobic atmosphere. The first-choice therapy to eradicate H. cinaedi is antimicrobial chemotherapy; however, its use is linked to the development of resistance. Although we need to understand the antimicrobial resistance mechanisms of H. cinaedi, unfortunately, sufficient genetic tools for H. cinaedi have not yet been developed. In July 2012, the complete sequence of H. cinaedi strain PAGU 611, isolated from a case of human bacteremia, was announced. This strain possesses multidrug efflux systems, intrinsic antimicrobial resistance mechanisms and typical mutations in gyrA and the 23S rRNA gene, which are involved in acquired resistance to fluoroquinolones and macrolides, respectively. Here, we compare the organization and properties of the efflux systems of H. cinaedi with the multidrug efflux systems identified in other bacteria.

References

[1]  Lawson, A.J. Helicobacter. In Manual of Clinical Microbiology, 10th; Versalovic, J., Carroll, K.C., Funke, G., Jorgensen, J.H., Landry, M.L., Warnock, D.W., Eds.; ASM Press: Washington D.C., USA, 2011; Volume 1, pp. 900–915.
[2]  Uckay, I.; Garbino, J.; Dietrich, P.Y.; Ninet, B.; Rohner, P.; Jacomo, V. Recurrent Bacteremia with Helicobacter cinaedi: Case Report and Review of the Literature. BMC Infect. Dis. 2006, 6, e86, doi:10.1186/1471-2334-6-86.
[3]  Kitamura, T.; Kawamura, Y.; Ohkusu, K.; Masaki, T.; Iwashita, H.; Sawa, T.; Fujii, S.; Okamoto, T.; Akaike, T. Helicobacter cinaedi Cellulitis and Bacteremia in Immunocompetent Hosts after Orthopedic Surgery. J. Clin. Microbiol. 2007, 45, 31–38, doi:10.1128/JCM.01507-06.
[4]  Khan, S.; Okamoto, T.; Enomoto, K.; Sakashita, N.; Oyama, K.; Fujii, S.; Sawa, T.; Takeya, M.; Ogawa, H.; Yamabe, H.; et al. Potential Association of Helicobacter cinaedi with Atrial Arrhythmias and Atherosclerosis. Microbiol. Immunol. 2012, 56, 145–154.
[5]  Tomida, J.; Kashida, M.; Oinishi, K.; Endo, R.; Morita, Y.; Kawamura, Y. Evaluation of Various Media for Rapid Detection of Helicobacter spp. J. Jpn. Soc. Clin. Microbiol. 2008, 18, 227–235.
[6]  Oyama, K.; Khan, S.; Okamoto, T.; Fujii, S.; Ono, K.; Matsunaga, T.; Yoshitake, J.; Sawa, T.; Tomida, J.; Kawamura, Y.; et al. Identification of and Screening for Human Helicobacter cinaedi Infections and Carriers via Nested PCR. J. Clin. Microbiol. 2012, 50, 3893–3900, doi:10.1128/JCM.01622-12.
[7]  Rimbara, E.; Mori, S.; Matsui, M.; Suzuki, S.; Wachino, J.; Kawamura, Y.; Shen, Z.; Fox, J.G.; Shibayama, K. Molecular Epidemiologic Analysis and Antimicrobial Resistance of Helicobacter cinaedi Isolated from Seven Hospitals in Japan. J. Clin. Microbiol. 2012, 50, 2553–2560.
[8]  Tomida, J.; Morita, Y.; Kawamura, Y. Antimicrobial Susceptibility Tests and Resistant Mechanisms of Helicobacter cinaedi. Jan. J. Bacteriol. 2012, 67, 127.
[9]  Belzer, C.; Stoof, J.; Breijer, S.; Kusters, J.G.; Kuipers, E.J.; van Vliet, A.H. The Helicobacter hepaticus hefA Gene is Involved in Resistance to Amoxicillin. Helicobacter 2009, 14, 72–79, doi:10.1111/j.1523-5378.2009.00661.x.
[10]  Gibreel, A.; Wetsch, N.M.; Taylor, D.E. Contribution of the CmeABC Efflux Pump to Macrolide and Tetracycline Resistance in Campylobacter jejuni. Antimicrob. Agents Chemother. 2007, 51, 3212–3216, doi:10.1128/AAC.01592-06.
[11]  Morita, Y.; Tomida, J.; Kawamura, Y. Primary Mechanisms Mediating Aminoglycoside Resistance in the Multidrug-resistant Pseudomonas aeruginosa Clinical Isolate PA7. Microbiology 2012, 158, 1071–1083, doi:10.1099/mic.0.054320-0.
[12]  Nikaido, H. Prevention of Drug Access to Bacterial Targets: Permeability Barriers and Active Rfflux. Science 1994, 264, 382–388.
[13]  Li, X.Z.; Nikaido, H. Efflux-mediated Drug Resistance in Bacteria: An Update. Drugs 2009, 69, 1555–1623.
[14]  Poole, K. Efflux-mediated Antimicrobial Resistance. In Antibiotic Discovery and Development; Dougherty, T.J., Pucci, M.J., Eds.; Springer: New York, NY, USA, 2012; Volume 1, pp. 349–395.
[15]  Zgurskaya, H.I.; Nikaido, H. Bypassing the Periplasm: Reconstitution of the AcrAB Multidrug Efflux Pump of Escherichia coli. Proc. Natl. Acad. Sci. USA 1999, 96, 7190–7195, doi:10.1073/pnas.96.13.7190.
[16]  Mine, T.; Morita, Y.; Kataoka, A.; Mizushima, T.; Tsuchiya, T. Evidence for Chloramphenicol/H+ Antiport in Cmr (MdfA) System of Escherichia coli and Properties of the Antiporter. J. Biochem. 1998, 124, 187–193, doi:10.1093/oxfordjournals.jbchem.a022078.
[17]  Yerushalmi, H.; Lebendiker, M.; Schuldiner, S. EmrE, an Escherichia coli 12-kDa Multidrug Transporter, Exchanges Toxic Cations and H+ and is Soluble in Organic Solvents. J. Biol. Chem. 1995, 270, 6856–6863.
[18]  Morita, Y.; Kataoka, A.; Shiota, S.; Mizushima, T.; Tsuchiya, T. NorM of Vibrio parahaemolyticus is an Na(+)-driven Multidrug Efflux Pump. J. Bacteriol. 2000, 182, 6694–6697, doi:10.1128/JB.182.23.6694-6697.2000.
[19]  Kobayashi, N.; Nishino, K.; Yamaguchi, A. Novel Macrolide-specific ABC-type Efflux Transporter in Escherichia coli. J. Bacteriol. 2001, 183, 5639–5644.
[20]  Huda, N.; Lee, E.W.; Chen, J.; Morita, Y.; Kuroda, T.; Mizushima, T.; Tsuchiya, T. Molecular Cloning and Characterization of an ABC Multidrug Efflux Pump, VcaM, in Non-O1 Vibrio cholerae. Antimicrob. Agents Chemother. 2003, 47, 2413–2417, doi:10.1128/AAC.47.8.2413-2417.2003.
[21]  Mine, T.; Morita, Y.; Kataoka, A.; Mizushima, T.; Tsuchiya, T. Expression in Escherichia coli of a New Multidrug Efflux Pump, MexXY, from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1999, 43, 415–417.
[22]  Goto, T.; Ogura, Y.; Hirakawa, H.; Tomida, J.; Morita, Y.; Akaike, T.; Hayashi, T.; Kawamura, Y. Complete Genome Sequence of Helicobacter cinaedi Strain PAGU 611, Isolated in a Case of Human Bacteremia. J. Bacteriol. 2012, 194, 3744–3745, doi:10.1128/JB.00645-12.
[23]  Miyoshi-Akiyama, T.; Takeshita, N.; Ohmagari, N.; Kirikae, T. Complete Genome Sequence of Helicobacter cinaedi Type Strain ATCC BAA-847. J. Bacteriol. 2012, 194, 5692, doi:10.1128/JB.01347-12.
[24]  The Human Microbiome Project Consortium. A Framework for Human Microbiome Research. Nature 2012, 486, 215–221.
[25]  Charoenlap, N.; Shen, Z.; McBee, M.E.; Muthupalani, S.; Wogan, G.N.; Fox, J.G.; Schauer, D.B. Alkyl Hydroperoxide Reductase is Required for Helicobacter cinaedi Intestinal Colonization and Survival under Oxidative Stress in BALB/c and BALB/c Interleukin-10?/? mice. Infect. Immun. 2012, 80, 921–928, doi:10.1128/IAI.05477-11.
[26]  Tseng, T.T.; Gratwick, K.S.; Kollman, J.; Park, D.; Nies, D.H.; Goffeau, A.; Saier, M.H., Jr. The RND Permease Superfamily: An Ancient, Ubiquitous and Diverse Family that Includes Human Disease and Development Proteins. J. Mol. Microbiol. Biotechnol. 1999, 1, 107–125.
[27]  Morita, Y.; Kimura, N.; Mima, T.; Mizushima, T.; Tsuchiya, T. Roles of MexXY- and MexAB-Multidrug Efflux Pumps in Intrinsic Multidrug Resistance of Pseudomonas aeruginosa PAO1. J. Gen. Appl. Microbiol. 2001, 47, 27–32, doi:10.2323/jgam.47.27.
[28]  Poole, K.; Krebes, K.; McNally, C.; Neshat, S. Multiple Antibiotic Resistance in Pseudomonas aeruginosa: Evidence for Involvement of an Efflux Operon. J. Bacteriol. 1993, 175, 7363–7372.
[29]  Lin, J.; Michel, L.O.; Zhang, Q. CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni. Antimicrob. Agents Chemother. 2002, 46, 2124–2131.
[30]  Trainor, E.A.; Horton, K.E.; Savage, P.B.; Testerman, T.L.; McGee, D.J. Role of the HefC Efflux Pump in Helicobacter pylori Cholesterol-dependent Resistance to Ceragenins and Bile Salts. Infect. Immun. 2011, 79, 88–97, doi:10.1128/IAI.00974-09.
[31]  Srikumar, R.; Li, X.Z.; Poole, K. Inner Membrane Efflux Components are Responsible for Beta-Lactam Specificity of Multidrug Efflux Pumps in Pseudomonas aeruginosa. J. Bacteriol. 1997, 179, 7875–7881.
[32]  Nakashima, R.; Sakurai, K.; Yamasaki, S.; Nishino, K.; Yamaguchi, A. Structures of the Multidrug Exporter AcrB Reveal a Proximal Multisite Drug-binding Pocket. Nature 2011, 480, 565–569.
[33]  Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410.
[34]  Tsugawa, H.; Suzuki, H.; Muraoka, H.; Ikeda, F.; Hirata, K.; Matsuzaki, J.; Saito, Y.; Hibi, T. Enhanced bacterial efflux system is the first step to the development of metronidazole resistance in Helicobacter pylori. Biochem. Biophys. Res. Commun. 2011, 404, 656–660, doi:10.1016/j.bbrc.2010.12.034.
[35]  Francesco, V.D.; Zullo, A.; Hassan, C.; Giorgio, F.; Rosania, R.; Ierardi, E. Mechanisms of Helicobacter pylori Antibiotic Resistance: An Updated Appraisal. World J. Gastrointest. Pathophysiol. 2011, 2, 35–41, doi:10.4291/wjgp.v2.i3.35.
[36]  Pumbwe, L.; Randall, L.P.; Woodward, M.J.; Piddock, L.J. Evidence for Multiple-antibiotic Resistance in Campylobacter jejuni not Mediated by CmeB or CmeF. Antimicrob. Agents Chemother. 2005, 49, 1289–1293, doi:10.1128/AAC.49.4.1289-1293.2005.
[37]  Akiba, M.; Lin, J.; Barton, Y.W.; Zhang, Q. Interaction of CmeABC and CmeDEF in Conferring Antimicrobial Resistance and Maintaining Cell Viability in Campylobacter jejuni. J. Antimicrob. Chemother. 2006, 57, 52–60.
[38]  Suerbaum, S.; Josenhans, C.; Sterzenbach, T.; Drescher, B.; Brandt, P.; Bell, M.; Droge, M.; Fartmann, B.; Fischer, H.P.; Ge, Z.; et al. The Complete Genome Sequence of the Carcinogenic Bacterium Helicobacter hepaticus. Proc. Natl. Acad. Sci. USA 2003, 100, 7901–7906.
[39]  Cagliero, C.; Mouline, C.; Payot, S.; Cloeckaert, A. Involvement of the CmeABC Efflux Pump in the Macrolide Resistance of Campylobacter coli. J. Antimicrob. Chemother. 2005, 56, 948–950, doi:10.1093/jac/dki292.
[40]  Yan, M.; Sahin, O.; Lin, J.; Zhang, Q. Role of the CmeABC Efflux Pump in the Emergence of Fluoroquinolone-resistant Campylobacter under Selection Pressure. J. Antimicrob. Chemother. 2006, 58, 1154–1159, doi:10.1093/jac/dkl412.
[41]  Lin, J.; Yan, M.; Sahin, O.; Pereira, S.; Chang, Y.J.; Zhang, Q. Effect of Macrolide Usage on Emergence of Erythromycin-resistant Campylobacter Isolates in Chickens. Antimicrob. Agents Chemother. 2007, 51, 1678–1686.
[42]  Martin, F.A.; Posadas, D.M.; Carrica, M.C.; Cravero, S.L.; O'Callaghan, D.; Zorreguieta, A. Interplay Between Two RND Systems Mediating Antimicrobial Resistance in Brucella suis. J. Bacteriol. 2009, 191, 2530–2540, doi:10.1128/JB.01198-08.
[43]  Teran, W.; Felipe, A.; Segura, A.; Rojas, A.; Ramos, J.L.; Gallegos, M.T. Antibiotic-dependent Induction of Pseudomonas putida DOT-T1E TtgABC Efflux Pump is Mediated by the Drug Binding Repressor TtgR. Antimicrob. Agents Chemother. 2003, 47, 3067–3072.
[44]  Hernould, M.; Gagne, S.; Fournier, M.; Quentin, C.; Arpin, C. Role of the AheABC Efflux Pump in Aeromonas hydrophila Intrinsic Multidrug Resistance. Antimicrob. Agents Chemother. 2008, 52, 1559–1563, doi:10.1128/AAC.01052-07.
[45]  Papadopoulos, J.S.; Agarwala, R. COBALT: Constraint-based Alignment Tool for Multiple Protein Sequences. Bioinformatics 2007, 23, 1073–1079, doi:10.1093/bioinformatics/btm076.
[46]  McGee, D.J.; George, A.E.; Trainor, E.A.; Horton, K.E.; Hildebrandt, E.; Testerman, T.L. Cholesterol Enhances Helicobacter pylori Resistance to Antibiotics and ll-37. Antimicrob. Agents Chemother. 2011, 55, 2897–2904, doi:10.1128/AAC.00016-11.
[47]  Lin, J.; Cagliero, C.; Guo, B.; Barton, Y.W.; Maurel, M.C.; Payot, S.; Zhang, Q. Bile Salts Modulate Expression of the CmeABC Multidrug Efflux Pump in Campylobacter jejuni. J. Bacteriol. 2005, 187, 7417–7424, doi:10.1128/JB.187.21.7417-7424.2005.
[48]  Lin, J.; Martinez, A. Effect of Efflux Pump Inhibitors on Bile Resistance and in Vivo Colonization of Campylobacter jejuni. J. Antimicrob. Chemother. 2006, 58, 966–972, doi:10.1093/jac/dkl374.
[49]  Lin, J.; Akiba, M.; Sahin, O.; Zhang, Q. CmeR Functions as a Transcriptional Repressor for the Multidrug Efflux Pump CmeABC in Campylobacter jejuni. Antimicrob. Agents Chemother. 2005, 49, 1067–1075, doi:10.1128/AAC.49.3.1067-1075.2005.
[50]  Hwang, S.; Kim, M.; Ryu, S.; Jeon, B. Regulation of Oxidative Stress Response by CosR, an Essential Response Regulator in Campylobacter jejuni. PLoS One 2011, 6, e22300.
[51]  Hwang, S.; Zhang, Q.; Ryu, S.; Jeon, B. Transcriptional Regulation of the CmeABC Multidrug Efflux Pump and the KatA Catalase by CosR in Campylobacter jejuni. J. Bacteriol. 2012. in press.
[52]  Poole, K. Stress Responses as Determinants of Antimicrobial Resistance in Gram-negative Bacteria. Trends Microbiol. 2012, 20, 227–234, doi:10.1016/j.tim.2012.02.004.
[53]  Morita, Y.; Tomida, J.; Kawamura, Y. MexXY Multidrug Efflux System of Pseudomonas aeruginosa. Front. Microbiol. 2012, 3, e408.
[54]  Hannenhalli, S.S.; Hayes, W.S.; Hatzigeorgiou, A.G.; Fickett, J.W. Bacterial Start Site Prediction. Nucleic Acids Res. 1999, 27, 3577–3582.
[55]  Shine, J.; Dalgarno, L. The 3'-terminal Sequence of Escherichia coli 16S Ribosomal RNA: Complementarity to Nonsense Triplets and Ribosome Binding Sites. Proc. Natl. Acad. Sci. USA 1974, 71, 1342–1346, doi:10.1073/pnas.71.4.1342.
[56]  Jeon, B.; Wang, Y.; Hao, H.; Barton, Y.W.; Zhang, Q. Contribution of CmeG to Antibiotic and Oxidative Stress Resistance in Campylobacter jejuni. J. Antimicrob. Chemother. 2011, 66, 79–85, doi:10.1093/jac/dkq418.
[57]  Van Amsterdam, K.; Bart, A.; van der Ende, A. A Helicobacter pylori TolC Efflux Pump Confers Resistance to Metronidazole. Antimicrob. Agents Chemother. 2005, 49, 1477–1482, doi:10.1128/AAC.49.4.1477-1482.2005.
[58]  Chen, J.; Morita, Y.; Huda, M.N.; Kuroda, T.; Mizushima, T.; Tsuchiya, T. VmrA, a Member of a Novel Class of Na(+)-coupled Multidrug Efflux Pumps from Vibrio parahaemolyticus. J. Bacteriol. 2002, 184, 572–576, doi:10.1128/JB.184.2.572-576.2002.
[59]  Miyamae, S.; Ueda, O.; Yoshimura, F.; Hwang, J.; Tanaka, Y.; Nikaido, H. A MATE Family Multidrug Efflux Transporter Pumps out Fluoroquinolones in Bacteroides thetaiotaomicron. Antimicrob. Agents Chemother. 2001, 45, 3341–3346, doi:10.1128/AAC.45.12.3341-3346.2001.
[60]  Begum, A.; Rahman, M.M.; Ogawa, W.; Mizushima, T.; Kuroda, T.; Tsuchiya, T. Gene Cloning and Characterization of Four MATE Family Multidrug Efflux Pumps from Vibrio cholerae Non-O1. Microbiol. Immunol. 2005, 49, 949–957.
[61]  Masaoka, Y.; Ueno, Y.; Morita, Y.; Kuroda, T.; Mizushima, T.; Tsuchiya, T. A Two-component Multidrug Efflux Pump, EbrAB, in Bacillus subtilis. J. Bacteriol. 2000, 182, 2307–2310, doi:10.1128/JB.182.8.2307-2310.2000.
[62]  Jack, D.L.; Storms, M.L.; Tchieu, J.H.; Paulsen, I.T.; Saier, M.H., Jr. A Broad-specificity Multidrug Efflux Pump Requiring a Pair of Homologous SMR-type Proteins. J. Bacteriol. 2000, 182, 2311–2313, doi:10.1128/JB.182.8.2311-2313.2000.
[63]  Nishino, K.; Nikaido, E.; Yamaguchi, A. Regulation and Physiological Function of Multidrug Efflux Pumps in Escherichia coli and Salmonella. Biochim. Biophys. Acta 2009, 1794, 834–843, doi:10.1016/j.bbapap.2009.02.002.
[64]  Higashi, K.; Ishigure, H.; Demizu, R.; Uemura, T.; Nishino, K.; Yamaguchi, A.; Kashiwagi, K.; Igarashi, K. Identification of a Spermidine Excretion Protein Complex (MdtJI) in Escherichia coli. J. Bacteriol. 2008, 190, 872–878, doi:10.1128/JB.01505-07.
[65]  Imperi, F.; Tiburzi, F.; Visca, P. Molecular basis of Pyoverdine Siderophore Recycling in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2009, 106, 20440–20445, doi:10.1073/pnas.0908760106.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133