全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Atmosphere  2012 

Continuous Cropping and Moist Deep Convection on the Canadian Prairies

DOI: 10.3390/atmos3040573

Keywords: Bowen ratio, convective available potential energy, moist deep convection, land-use change, summerfallow

Full-Text   Cite this paper   Add to My Lib

Abstract:

Summerfallow is cropland that is purposely kept out of production during a growing season to conserve soil moisture. On the Canadian Prairies, a trend to continuous cropping with a reduction in summerfallow began after the summerfallow area peaked in 1976. This study examined the impact of this land-use change on convective available potential energy (CAPE), a necessary but not sufficient condition for moist deep convection. All else being equal, an increase in CAPE increases the probability-of-occurrence of convective clouds and their intensity if they occur. Representative Bowen ratios for the Black, Dark Brown, and Brown soil zones were determined for 1976: the maximum summerfallow year, 2001: our baseline year, and 20xx: a hypothetical year with the maximum-possible annual crop area. Average mid-growing-season Bowen ratios and noon solar radiation were used to estimate the reduction in the lifted index (LI) from land-use weighted evapotranspiration in each study year. LI is an index of CAPE, and a reduction in LI indicates an increase in CAPE. The largest reductions in LI were found for the Black soil zone. They were ?1.61 ± 0.18, ?1.77 ± 0.14 and ?1.89 ± 0.16 in 1976, 2001 and 20xx, respectively. These results suggest that, all else being equal, the probability-of-occurrence of moist deep convection in the Black soil zone was lower in 1976 than in the base year 2001, and it will be higher in 20xx when the annual crop area reaches a maximum. The trend to continuous cropping had less impact in the drier Dark Brown and Brown soil zones.

References

[1]  Msangi, S.; Sulser, T.; Rosegrant, M.; Valmonte-Santos, R. Global Scenarios for Biofuels: Impacts and Implications for Food Security and Water Use. In Tenth Annual Conference on Global Economic Analysis; Purdue University: West Lafayette, IN, USA, 2007.
[2]  Dumanski, J.; Desjardins, R.L.; Tarnocai, C.; Monreal, C.; Gregorich, E.G.; Kirkwood, V.; Campbell, C.A. Possibilities for future carbon sequestration in canadian agriculture in relation to land use changes. Climatic Change 1998, 40, 81–103, doi:10.1023/A:1005390815340.
[3]  Adegoke, J.O.; Pielke, R., Sr.; Carleton, A.M. Observational and modeling studies of the impacts of agriculture-related land use change on planetary boundary layer processes in the central US. Agri. Forest Meteorol. 2007, 142, 203–215, doi:10.1016/j.agrformet.2006.07.013.
[4]  Beltrán-Przekurat, A.; Pielke, R.A., Sr.; Eastman, J.L.; Coughenour, M.B. Modelling the effects of land-use/land-cover changes on the near-surface atmosphere in Southern South America. Int. J. Climatol. 2012, 32, 1206–1225, doi:10.1002/joc.2346.
[5]  Betts, R.A.; Falloon, P.D.; Goldewijk, K.K.; Ramankutty, N. Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. Agri. Forest Meteorol. 2007, 142, 216–233, doi:10.1016/j.agrformet.2006.08.021.
[6]  Chase, T.N.; Pielke, R.A., Sr.; Kittel, T.G.F.; Nemani, R.R.; Running, S.W. Simulated impacts of historical land cover changes on global climate in northern winter. Clim. Dynam. 2000, 16, 93–105, doi:10.1007/s003820050007.
[7]  Gameda, S.; Qian, B.; Campbell, C.A.; Desjardins, R.L. Climatic trends associated with summerfallow in the Canadian prairies. Agri. Forest Meteorol. 2007, 142, 170–185, doi:10.1016/j.agrformet.2006.03.026.
[8]  Pielke, R.A., Sr.; Adegoke, J.O.; Chase, T.N.; Marshall, C.H.; Matsui, T.; Niyogi, D. A new paradigm for assessing the role of agriculture in the climate system and in climate change. Agri. Forest Meteorol. 2007, 142, 234–254, doi:10.1016/j.agrformet.2006.06.012.
[9]  Raddatz, R.L. Evidence for the influence of agriculture on weather and climate through the transformation and management of vegetation: Illustrated by examples from the canadian prairies. Agri. Forest Meteorol. 2007, 142, 186–202, doi:10.1016/j.agrformet.2006.08.022.
[10]  Pielke, R.A., Sr.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F.; Goldewijk, K.K.; Nair, U.; Betts, R.; Fall, S.; et al. Land use/land cover changes and climate: Modeling analysis and observational evidence. WIREs Clim. Change 2011, 2, 828–850, doi:10.1002/wcc.144.
[11]  Nair, U.S.; Wu, Y.; Kala, J.; Lyons, T.J.; Pielke, R.A., Sr.; Hacker, J.M. The Role of land use change on the development and evolution of the west coast trough, convective clouds, and precipitation in Southwest Australia. J. Geophys. Res. 2011, doi:10.1029/2010JD014950.
[12]  Desjardins, R.L.; Sivakumar, M.V.K.; de Kimpe, C. The contribution of agriculture to the state of climate: Workshop summary and recommendations. Agri. Forest Meteorol. 2007, 142, 314–324, doi:10.1016/j.agrformet.2006.07.011.
[13]  Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007; Cambridge University Press: Cambridge, UK, 2007.
[14]  Avila, F.B.; Pitman, A.J.; Donat, M.G.; Alexander, L.V.; Abramowitz, G. Climate model simulated changes in temperature extremes due to land cover change. J. Geophys. Res. 2012, doi:10.1029/2011JD016382.
[15]  Pitman, A.J.; Avila, F.B.; Abramowitz, G.; Wang, Y.P.; Phipps, S.J.; de Noblet-Ducoudre, N. Importance of background climate in determining impact of land-cover change on regional climate. Nature Clim. Change 2011, 1, 472–475, doi:10.1038/nclimate1294.
[16]  Lee, S.-H.; Kimura, F. Comparative studies in the local circulations induced by land-use and by topography. Bound. Lay. Meteorol. 2001, 101, 157–182, doi:10.1023/A:1019219412907.
[17]  Clark, C.A.; Arritt, R.W. Numerical simulations of the effect of soil moisture and vegetation cover on the development of deep convection. J. Appl. Meteor. 1995, 34, 2030–2045.
[18]  Weisman, M.L.; Klemp, J.B. Characteristics of Isolated Convective Storms in Mesoscale Meteorology and Forecasting. In Mesoscale Meteorology and Forecasting; Ray, P.S., Ed.; American Meteorological Society: Boston, MA, USA, 1986; pp. 331–358.
[19]  Pielke, R.A., Sr. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys. 2001, 39, 151–177, doi:10.1029/1999RG000072.
[20]  Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK, 1987; p. 435.
[21]  Mahrt, L.; Pierce, D. Relationship of moist convection to boundary-layer properties: Application to a semiarid region (Colorado). Mon. Weather Rev. 1980, 108, 1810–1815, doi:10.1175/1520-0493(1980)108<1810:ROMCTB>2.0.CO;2.
[22]  Rabin, R.M.; Stensrud, D.J.; Stadler, S.; Wetzel, P.J.; Gregory, M. Observed effects of landscape variability on convective clouds. Bull. Amer. Meteorol. Soc. 1990, 71, 272–280, doi:10.1175/1520-0477(1990)071<0272:OEOLVO>2.0.CO;2.
[23]  Segal, M.; Arritt, R.W.; Clark, C.; Rabin, R.; Brown, J. Scaling evaluation of the effect of surface characteristics on potential for deep convection over uniform terrain. Mon. Weather Rev. 1995, 123, 383–400, doi:10.1175/1520-0493(1995)123<0383:SEOTEO>2.0.CO;2.
[24]  Zawadzki, I.; Torlaschi, E.; Sauvageau, R. The relationship between mesoscale thermodynamic variables and convective precipitation. J. Atmos. Sci. 1981, 38, 1535–1540, doi:10.1175/1520-0469(1981)038<1535:TRBMTV>2.0.CO;2.
[25]  Blanchard, D.O. Assessing the vertical distribution of convective available potential energy. Weather Forecast. 1998, 13, 870–877, doi:10.1175/1520-0434(1998)013<0870:ATVDOC>2.0.CO;2.
[26]  Galway, J.G. The lifted index as a predictor of latent instability. Bull. Amer. Meteor. Soc. 1956, 37, 528–529.
[27]  Raddatz, R.L. Anthropogenic vegetation transformation and the potential for deep convection on the canadian prairies. Can. J. Soil Sci. 1998, 78, 657–666, doi:10.4141/S98-011.
[28]  Raddatz, R.L. An operational agrometeorological information system for the canadian prairies. Climatol. Bull. 1989, 23, 83–97.
[29]  Raddatz, R.L.; Cummine, J.D. Inter-annual variability of moisture flux from the prairie agro-ecosystem: Impact of crop phenology on the seasonal pattern of tornado days. Bound. Lay. Meteorol. 2003, 106, 283–295, doi:10.1023/A:1021117925505.
[30]  Statistics Canada. Preliminary Estimates of Principal Field Crop Areas. Available online: www.statcan.gc.ca/daily-quotidien/120627/t120627a001-eng.htm (accessed on 7 December 2012).
[31]  Dow, C.L.; de Walle, D.R. Trends in evaporation and Bowen ratio on urbanizing watersheds in Eastern United States. Water Resour. Res. 2000, 36, 1835–1843, doi:10.1029/2000WR900062.
[32]  Degu, A.M.; Hossain, F.; Niyogi, D.; Pielke, R., Sr.; Shepherd, J.M.; Voisin, N.; Chronis, T. The influence of large dams on surrounding climate and precipitation patterns. Geophys. Res. Lett. 2011, doi:10.1029/2010GL046482.
[33]  Campbell, C.A.; Zentner, R.P.; Gameda, S.; Blomert, B.; Wall, D.D. Production of annual crops on the canadian praries: trends during 1976–1998. Can. J. Soil Sci. 2002, 82, 45–57.
[34]  Environment Canada. National Climate Data and Information Archive. Available online: climate.weatheroffice.gc.ca/climateData/canada_e.html (accessed on 3 April 2012).
[35]  Agriculture and Agri-Food Canada. AAFC-AAC Real Time Weather Data System. Available online: ablethr2/weather/weathermain.aspx?Language=0 (accessed on 27 March 2012).
[36]  Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998.
[37]  Robertson, G.W. A biometeorological time scale for a cereal crop involving day and night temperatures and photoperiod. Int. J. Biometeorol. 1968, 12, 191–223, doi:10.1007/BF01553422.
[38]  Baier, W. Evaluation of latent evaporation estimates and their conversion to potential evaporation. Can. J. Plant. Sci. 1971, 51, 255–266, doi:10.4141/cjps71-053.
[39]  Hobbs, E.H.; Krogman, K.K. Observed and estimated evapotranspiration in Southern Alberta. T. ASAE 1968, 11, 502–503.
[40]  Rasmussen, V.P.; Hanks, R.J. Spring wheat yield model for limited moisture conditions. Agron. J. 1978, 70, 940–944, doi:10.2134/agronj1978.00021962007000060012x.
[41]  Clothier, B.E.; Clawson, K.L.; Pinter Jr, P.J.; Moran, M.S.; Reginato, R.J.; Jackson, R.D. Estimation of soil heat flux from net radiation during the growth of Alfalfa. Agri. Forest Meteorol. 1986, 37, 319–329, doi:10.1016/0168-1923(86)90069-9.
[42]  Santanello, J.A.; Friedl, M.A. Diurnal covariation in soil heat flux and net radiation. J. Appl. Meteorol. 2003, 42, 851–862, doi:10.1175/1520-0450(2003)042<0851:DCISHF>2.0.CO;2.
[43]  Statistics Canada. Total Farm Area, Land Tenure and Land in Crops, by Province (Census of Agriculture, 1986–2006). Available online: www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/agrc25a-eng.htm (accessed on 27 August 2012).
[44]  Statistics Canada. Census of Agriculture. Alberta; Agriculture Division, Statistics Canada: Ottawa, ON, Canada, 1977; p. 153.
[45]  Statistics Canada. Census of Agriculture. Manitoba; Agriculture Division, Statistics Canada: Ottawa, ON, Canada, 1977; p. 177.
[46]  Statistics Canada. Census of Agriculture.Saskatchewan; Agriculture Division, Statistics Canada: Ottawa, ON, Canada, 1977; p. 189.
[47]  Raddatz, R.L.; Noonan, M. Monthly mean afternoon mixing-layer depths “tuned” to the eco-climatic regions of the canadian prairie provinces. Environ. Model. Assess. 2005, 9, 147–158, doi:10.1007/s10666-005-3802-x.
[48]  Ash, G.H.B.; Shaykewich, C.F.; Raddatz, R.L. Moisture risk assessment for spring wheat on the eastern prairies: A water-use simulation model. Climatol. Bull. 1992, 26, 65–78.
[49]  Raddatz, R.L.; Shaykewich, C.F.; Bullock, P.R. Prairie crop yield estimates from modelled phenological development and water use. Can. J. Plant. Sci. 1994, 74, 429–436, doi:10.4141/cjps94-080.
[50]  Koster, R.D.; Suarez, M.J. Suggestions in the observational record of land-atmosphere feedback operating at seasonal time scales. J. Hydrometeorol. 2004, 5, 567–572, doi:10.1175/1525-7541(2004)005<0567:SITORO>2.0.CO;2.
[51]  Environment Canada. National Inventory Report 1990–2006—Greenhouse Gas Sources and Sinks in Canada; Environment Canada: Gatineau, QC, Canada, 2008.
[52]  Raddatz, R.L.; Hanesiak, J.M. Significant summer rainfall in the canadian prairie provinces: Modes and mechanisms 2000–2004. Int. J. Climatol. 2008, 28, 1607–1613, doi:10.1002/joc.1670.
[53]  Gameda, S.; Qian, B.; Campbell, C.A.; Desjardins, R. Summerfallow Trends and Climate in the Canadian Prairies. Available online: ams.confex.com/ams/BLTAgFBioA/techprogram/paper_111162.htm (accessed on 24 March 2012).
[54]  Bonsai, B.R.; Zhang, X.; Hogg, W.D. Canadian prairie growing season precipitation variability and associated atmospheric circulation. Climate Res. 1999, 11, 191–208, doi:10.3354/cr011191.
[55]  Zhang, X.; Vincent, L.A.; Hogg, W.D.; Niitsoo, A. Temperature and precipitation trends in canada during the 20th Century. Atmos. Ocean. 2000, 38, 395–429, doi:10.1080/07055900.2000.9649654.
[56]  Akinremi, O.O.; McGinn, S.M.; Cutforth, H.W. Seasonal and spatial patterns of rainfall trends on the canadian prairies. J. Climate 2001, 14, 2177–2182, doi:10.1175/1520-0442(2001)014<2177:SASPOR>2.0.CO;2.
[57]  Shepherd, A.; McGinn, S.M. Assessment of climate change on the canadian prairies from downscaled gcm data. Atmos. Ocean. 2003, 41, 301–316, doi:10.3137/ao.410404.
[58]  Cutforth, H.W. Climate change in the semiarid prairie of southwestern saskatchewan: Temperature, precipitation, wind, and incoming solar energy. Can. J. Soil Sci. 2000, 80, 375–385, doi:10.4141/S99-074.
[59]  Brimelow, J.C.; Hanesiak, J.M.; Raddatz, R.L.; Hayashi, M. Validation of ET estimates from the canadian prairie agrometeorological model for contrasting vegetation types and growing seasons. Can. Water Resour. J. 2010, 35, 209–230, doi:10.4296/cwrj3502209.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133